Panorama Tuchowa z widokiem na Tatry
(fot. Wiktor Chrzanowski)
Spis treści:

1. Historia Tuchowa
   Jarosław Schabowski ................................................................................................................5

2. Wybrane problemy parkingowe w miastach
   Andrzej Szarata ........................................................................................................................11

3. Zarządzanie parkingami w programie ITS w centrum miasta Wrocławia
   Ryszard Piasecki .......................................................................................................................15

4. Płatne parkowanie narzędziem zarządzania mobilnością
   Piotr Jan Graczyk .....................................................................................................................31

5. Analiza lokalizacji parkingów Park and Ride w województwie małopolskim wzdłuż korytarzy planowanej kolei aglomeracyjnej SKA
   Małgorzata Gierczak, Magdalena Jurkowska ......................................................................43

6. Parkingi obrotowe szansą dla zatłoczonych miast
   Zdzisław Dąbczyński, Paweł Stańczyk, Paweł Pyrek .......................................................47

7. Możliwości zagospodarowania przestrzeni około parkingowych oraz MOP z wykorzystaniem elementów Fitness Outdoor
   Rafał Sobieraj ............................................................................................................................57

8. Uspokojenie ruchu - doświadczenia, problemy, potrzeby.
   Miasteczko holenderskie w Puławach - doświadczenia w uspokojeniu ruchu po latach
   Janusz Bohatkiewicz, Krzysztof Jamroziek, Sebastian Bienacki, Maciej Hałucha ..................63

9. Wybrane urządzenia brd w świetle nowych wytycznych barierowych
   Jarosław Schabowski ..............................................................................................................81

10. Seminaria i spotkania S-KLIR .............................................................................................89

11. Uchwała 1/14 ..........................................................................................................................93
Historia Tuchowa

Kiedy Tuchów pojawił się jako osada – tego na pewno stwierdzić się nie da; być może już w czasach rzymskich, a może nawet wcześniej, o czym świadczyć mogą znaleziska archeologiczne (siekierka krzemienna, fragmenty ceramiki cienkościennej). Wyniki dotychczasowych badań historyków zdają się wskaazywać na epokę Bolesława Chrobrego jako na początek osady; był to bowiem okres pierwszej kolonizacji doliny Białej. Przypuszcza się, że istniał tu gród, stanowiący aprowizacyjne zaplecze królewskiej drużyny; mieszkańcy osady trudnili się hodowlą, o czym świadczą niektóre nazwy miejscowe (Gadówka, Wołowa, Karwodrza). Pochodzenie nazwy osady jest niejasne i nie zostało dostatecznie wyjaśnione. Być może jest to nazwa dzierżawcza, pochodząca od nazwiska

Bazylika pw. Nawiedzenia Najświętszej Maryi Panny i Św. Stanisława

Pomyślny rozwój miasta przypadł na wieki XV i XVI. Pojawili się tu liczni rzemieślnicy: piekarze, rzeźnicy, piwowarzy, tkacze, szewcy, rozwinoło się życie cechowe. Tuchowscy kupcy utrzymywali ożywione kontakty handlowe, głównie z Węgrami. Handlowali solą, którą wydobywano przez około 300 lat, bydłem, przywozili wino.

Stopniowy upadek miasta nastąpił w wieku XVII, zwłaszcza po szwedz- kim potopie, kiedy Tuchów padł łupem wojsk Rakoczego, które mieszkańców ograbiły a miasto w znacznym stopniu zniszczyły. Dzieła dopełniły zbierające obfite źniwo zarazy oraz pożary, z których najbardziej dla miasta tragiczny był ten z roku 1789 – spłonęły 24 domy w rynku, kościół św. Jakuba, budynek szkolny i stodoła wojskowa, były ofiary w ludziach. Prawie 100 lat po tym wydarzeniu powołano do życia straż pożarną (1883 r.)
Po I rozbiorze Tuchów znalazł się w Galicji, co w znaczącej mierze zdecydowało o dalszych losach miasta. Cesarz Józef II skasował w 1782 roku wiele zakonów, w tym benedyktynów. Ziemie wchodzące dotąd w skład klucza tuchowskiego przejęło państwo. Wystawiono je na licytację. Dobra tuchowskie kupił hrabia d’Altona, później baron Hirsch. Od niego odkupili je Rozwadowscy, którzy byli ich właścicielami do 1945 r. i wiele dobrego dla miasta zrobili, zwłaszcza hr. Ludwika z Zamojskich Rozwadowska, m.in. ufundowała ochronkę, przekazała teren pod cmentarz.


Kolejna fala zniszczeń to okres I wojny światowej, podczas której Tuchów mocno ucierpiał, gdyż znajdował się w strefie frontowej i przechodził kilkakrotnie z rąk do rąk. Mieszkańcy narażeni byli na liczne grabieże, rekwizycje, konfiskaty; padali ofiarami zabójstw i działań bojowych, w tym wielkiej bitwy.

W okresie międzywojennym miasto dźwigało się powoli z upadku spowodowanego wojennymi zniszczeniami. Działały tu liczne organizacje polityczne; szczególnie rozwinięty był ruch ludowy. Tuchów był jedynym miasteczkim w powiecie tarnowskim, które zachowało prawa miejskie.
Kontynuacją patriotycznych tradycji był ruch oporu w czasie II wojny światowej, który zaowocował udziałem w Akcji „Burza” Batalionu „Barbara” 16 Pułku Piechoty Armii Krajowej, a także odbywającym się tu w kilku ośrodkach tajnym nauczaniem. Z działań wojennych – w przeciwnieństwie do pierwszej wojny – Tuchów wyszedł z niewielkimi tylko zniszczeniami: spalona bóżnica, wysadzony most na Białej i uszkodzony ratusz. Tragedia dotknęła mieszkańczych w Tuchowie i okolicy Żydów, których zamknięto w getcie i wywieziono do obozu zagłady w Bełżcu. Po II wojnie światowej nastąpił rozwój miasta: powstało liceum ogólnokształcące oraz szkoła zawodowa, szpital, drobne zakłady pracy, osiedla mieszkaniowe, Dom Kultury, oczyszczalnia ścieków, wodociągi, ujęcie wody pitnej w Lubaszowej, stacje paliw, przeprowadzono gazifikację, wyremontowano ratusz i rynek, zbudowano lub gruntownie zmodernizowano budynki szkolne w mieście i gminie. Obecnie Tuchów znany jest z jednego z najnowocześniejszych zakładów w Europie produkujących znaki drogowe i urządzenia brd, wielu zakładów stolarskich eksportujących swe wyroby za granice i drobnej przedsiębiorczości, która daje zatrudnienie mieszkańcom miasta i okolic.

W mieście i okolicy odbywają się liczne imprezy kulturalne i sportowe, z których wiele ma charakter międzynarodowy. Do najciekawszych należą: Ogólnopolski Turniej Tańca Towarzyskiego, Małopolski Przegląd Zespołów Ko-

![Zabytkowy ratusz klasycystyczny w na rynku w Tuchowie](image-url)

/Materiały o Tuchowie zebrał Jarek Schabowski/
Wybrane problemy parkingowe w miastach

Problem parkowania staje się coraz ważniejszym zagadnieniem, dotyczącym zwłaszcza dużych miast i aglomeracji. Jednym z podstawowych narzędzi wspomagających proces zarządzania transportem jest wprowadzenie stref płatnego parkowania.

W polskich warunkach, w miastach powyżej 50 tysięcy mieszkańców wyznacza się strefy płatnego parkowania. Są one organizowane zazwyczaj w centrach miast, a ich głównym celem jest zarządzanie dostępnością tych obszarów. Co do wielkości są one zróżnicowane: największa strefa płatnego parkowania znajduje się w Warszawie (ok. 22 tys. miejsc parkingowych), w Krakowie (ok. 11 tys. miejsc parkingowych), w Szczecinie (ok. 8,5 tys. miejsc parkingowych), w Poznaniu (ok. 6 tys. miejsc parkingowych), we Wrocławiu (ok. 2,8 tys. miejsc parkingowych) i w Łodzi (ok. 1,8 tys. miejsc parkingowych).

Wysokość pobieranych opłat w tych strefach powinna być kompromisem uwzględniającym lokalne uwarunkowania. Zbyt wysokie...
będą powodować niewykorzystanie wydzielonych płatnych miejsc parkingowych i zachęcać do parkowania w miejscach niedozwolonych. Natomiast wprowadzenie zbyt niskiej wysokości opłat może spowodować, że strefa nie będzie spełniać swojej funkcji, a koszty utrzymania przewyższą przychody. Należy podkreślić fakt, iż górna wartość opłat za parkowanie jest uregulowana przepisami państwowymi, co w wielu przypadkach znacznie utrudnia prowadzenie polityki parkingowej.

Polityka parkingowa miasta stanowi bardzo istotny element w dążeniu do zrównoważonego systemu transportowego. Europejskie miasta w drugiej połowie XX wieku pomijały „Politykę Parkingową” jako narzędzie mogące wpływać pozytywnie na wiele aspektów społecznych w miastach. Była ona głównie wykorzystywana w projektowaniu parkingów, by zwiększać ilość miejsc posto- jowych. Lokalne władze miast europejskich pozwalały na bezpłatne parkowanie w każdym miejscu w mieście - na chodnikach, ścieżkach rowerowych drogach, zabytkowych placach. Takie przyzwolenie powodowało stopniową i nieuniknioną degradację miast, utrudniając poruszanie się pieszych i rowerzystów, zwiększając zanieczyszczenia powietrza i zaburzając estetykę tych miejsc. Miasto Kraków konsekwentnie realizuje postulat racjonalizacji wykorzystania istniejących miejsc parkingowych, np. poprzez stosowanie w coraz szerszym zakresie opłat za parkowanie na terenach publicznych.

Rys. 2. Przykład nieprawidłowego parkowania w miejscach do tego nieprzeznaczonych

zabytkowych placach. Takie przyzwolenie powodowało stopniową i nieuniknioną degradację miast, utrudniając poruszanie się pieszych i rowerzystów, zwiększając zanieczyszczenia powietrza i zaburzając estetykę tych miejsc. Miasto Kraków konsekwentnie realizuje postulat racjonalizacji wykorzystania istniejących miejsc parkingowych, np. poprzez stosowanie w coraz szerszym zakresie opłat za parkowanie na terenach publicznych.
Lata 90’ rozpoczęły szybki wzrost wskaźnika motoryzacji w miastach europejskich, spowodował zajęcie przestrzeni publicznej przez parkujące samochody, co przekłada się na każdy pojazd parkujący zajmuje od 15 m2 do 30 m2. Centra miast zaczęły stawać się coraz bardziej zatłoczone i zakorkowane, co miało wpływ na zmianę kierunku polityki parkingowej. Zmiana kierunku polityki parkingowej była argumentowana chęcią ożywienia centr miast poprzez zredukowanie ilości podróży wykonywanych przy wykorzystaniu komunikacji indywidualnej, zwiększenie znaczenia komunikacji zbiorowej, wykorzystanie obecnych i planowanych ścieżek rowerowych oraz możliwości uspokojenia ruchu na wybranych terenach. Skutki wprowadzonych zmian w polityce parkingowej miast europejskich są imponujące. Na ich przykładzie można zauważyć ożywienie centr miast, znaczącą redukcję podróży prywatnymi samochodami, redukcję hałasu i zanieczyszczenia powietrza oraz pozytywny wpływ na ogólną poprawę jakości życia w obrębie centr miast.

Pomimo sukcesu kilku dużych europejskich metropolii wiele miast, m.in. Kraków, wciąż boryka się z wieloma problemami związanymi z wprowadzaniem stref płatnego parkowania. W ramach prezentacji zostaną przedstawione wybrane Europejskie metropolie których sposób organizacji płatnych stref parkingowych uznawany jest za innowacyjny na tle pozostałych miast.
Zarządzanie parkingami w programie ITS w centrum miasta Wrocławia

Przyjęty program budowy ITS w dwóch etapach, przewidywał w II etapie techniczne i sprzętowe rozwiązania TIP [NPARK] do końca 2013 roku, a wdrażanie w ciągu 2014 roku, poprzez kolejne przyłączenie obiektów z parkingami wielopoziomowymi – stan na kwiecień 2014

Miasto Wrocław – według charakterystyki rejonów urbanistycznych – zróżnicowanie jest pod względem gęstości zaludnienia od 20 tys. osób/km² w obszarach Stare Miasto i Południe do 100 osób/km² w obszarach Żar i Rędzin. Średnia gęstość zaludnienia wynosi 2161 osób/km². ITS ma wspomóc funkcjonowanie miasta w sferze transportu, komunikacji publicznej i dostępu do szeroko rozumianej infrastruktury społecznej, gospodarczej, usług i nauki. Centrum miasta jest nasycone infrastrukturą wymagającą dostępu, dojazdu i parkowania.

ABSTRACT
Parking Management Policy in ITS Programme in the Centre of Wrocław The Wrocław ITS programme is under implementation since 2012. The first stage was the TRAM PLUS and infrastructural facilities, the second one – Dynamic Information System – which is implemented this year. The first important item is the Parking Guidance System described below.
System ITS.
Charakterystyka Miasta.

Tabela 1. Nazewnictwo i skróty

<table>
<thead>
<tr>
<th>Nazwa Objaśnienie Używane pojęcie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inteligent Transport System</td>
</tr>
<tr>
<td>Traffic Management Center</td>
</tr>
<tr>
<td>Tablica Informacji Parkingowej</td>
</tr>
<tr>
<td>System Informacji Parkingowej</td>
</tr>
<tr>
<td>Dynamiczna Informacja Przystankowa</td>
</tr>
<tr>
<td>Tablice zmiennej treści szt. 13</td>
</tr>
</tbody>
</table>

Wrócę krótko do charakterystyki miasta, aby na tym tle przedstawić ostatnie (6.) zadanie etapu II, tzn. wdrażania systemu [SIP] TABLICE INFORMACJI PARKINGOWEJ pierwotnie nazywane NPARK obok wdrożonego systemu DIP i VMS,

**Przypomnienie:** ostatnie dwa dziesięciolecia, to dla Wrocławia okres intensywnego rozwoju społeczno-gospodarczego. W statystyce roku 2010 jest to miasto duże, zarówno pod względem obszaru, jak i liczby mieszkańców (292,78 km², 632,1 tys. mieszkańców¹). Pod względem wielkości jest 4 ośrodkiem w Polsce, wg tego samego kryterium, w Unii Europejskiej zajmuje 33 miejsce.

Rozciągłość północno-południowa miasta wynosi 19,4 km, natomiast wschodnio-zachodnia wynosi 26,3 km. Średnia gęstość zaludnienia wynosi 2161 osób/km². Największa gęstość zaludnienia występuje w obszarze Starego Miasta i wynosi ponad 20 000 osób/km² w obszarze o wymiarach 2,5x1,5 km. Ponadto, aktualnie, we Wrocławiu studiuje ok. 135 000 studentów. Powyższa grupa, liczbowo równa jest 21% ilości mieszkańców miasta i generuje różnorakie potrzeb-  

---

by wewnętrz miasta. Wśród zatrudnionych, 42% pracuje w segmencie usługi, w przeważającej ilości w centrum.

Przyznanie Wrocławowi niektórych meczy eliminacyjnych EURO 2012 zbiegło się z prowadzonymi od 2006 roku pracami nad Tramwajem Plus przez pełnomocnika prezydenta ds. tego tramwaju i pozwoliło także na intensyfikację prac nad Inteligentnym System Transportu we Wrocławiu.

Jak zarządzano parkingami – miejscami parkingowymi do roku 2013.

Czy jest spełniona zasada rotacji.

Odpowiedź jest twierdząca i obrazuje to poniższa tabela nr 1.

<table>
<thead>
<tr>
<th>Strefa</th>
<th>Ilość miejsc</th>
<th>Ilość wykupionych biletów na dzień roboczy śr.</th>
<th>Średni czas parkowania</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>655</td>
<td>2155</td>
<td>65 min.</td>
</tr>
<tr>
<td>B</td>
<td>617</td>
<td>1551</td>
<td>62 min.</td>
</tr>
<tr>
<td>C</td>
<td>2788</td>
<td>3856</td>
<td>70 min.</td>
</tr>
</tbody>
</table>

Kwestie finansowe i operatora pomijam, jako niedotyczające do tego tematu. Jednak ten system ma wiele wad, a podstawowa, to szukanie wolnego miejsca, przez co powstaje zbędny ruch pojazdów i zatłoczenie. Koliduje to też z innymi funkcjami obszaru Starego Miasta.

Od roku 1995 budowane są na obrzeżach Starego Miasta parkingi kubaturowe, wielopoziomowe, jest ich kilkanaście. Mają one funkcję wyłącznie parkingową [2] albo mieszaną - biurowo-handlową albo związaną z rozrywką lub kulturą. Parkingów o pojemności powyżej 100 miejsc jest 9, kilka pomiędzy 15 a 75 miejsc, cześć ma charakter zamknięty dla użytkowników obiektu. Początkowo właściciele i operatorzy stosowali rozwiązania ograniczające dostęp przy sa-
mym obiekcie, z niewielką informacją zewnętrzną. Powodowało to często nie-
możność skorzystania z tych miejsc na skutek uwarunkowań organizacji ruchu
i dopuszczenych kierunków jazdy.

Typowy widok z parkometrem oraz bilet parkingowy w strefie A – 2,00 zł za 50 min. postoju

**Nowe Centrum Zarządzania Ruchem i Transportem Publicznym we Wrocławiu.**

Integrując w roku 2013 w jeden komplementarny system zarządzania ruchem
drogowym w mieście wykonano lub rozbudowano te elementy, które są przy-
datne zarówno dla korzystających z komunikacji publicznej, jak i indywidualnej,
dając możliwość dokładnego poinformowania jak, gdzie i kiedy można doje-
chać komunikacją MPK albo jakie są warunki ruchu na ulicach, albo gdzie można
zaparkować samochód bez zbędnego tracenia czasu na poszukiwanie miejsca,
a więc zbędnego obciążania układu komunikacyjnego. Temu służą trzy systemy;
DIP, VMS i SIP [TIP]. System DIP, obejmujący 168 kluczowych przystanków, ilustrują dwie fotografie (totem i słupek).
Zintegrowany System Transportu Szynowego we Wrocławiu i w Aglomeracji - Tramwaj Plus

Przyznanie dla Wrocławia niektórych meczy eliminacyjnych EURO 2012 zbiegło się z prowadzonymi pracami od 2006 roku nad Tramwajem Plus przez Pełnomocnika Prezydenta ds. tego tramwaju i pozwoliło na intensyfikację prac nad dwoma liniami w relacjach Gaj – Stadion na Malicach i Pilczyce – Sępolno [stary Stadion Olimpijski]

System VMS obejmuje 13 tablic bramowych ze znakami zmiennej treści, propozującej alternatywne 5 tras z pośród 10-ciu, biorąc pod uwagę kryterium czasu przejazdu albo zawierające ważne komunikaty: o utrudnieniach, wypadkach czy robotach drogowych; przykłady poniżej na fotografii 3 i 4.

Rozmieszczenie 168 znaków przystaniowych typu DIP
System Informacji Parkingowej

Informacja Parkingowa zrealizowana w ramach ITS we Wrocławiu dostarcza użytkownikom dróg aktualne informację o stanie zajętości wybranych parkingów, które włączono do systemu. Obejmuje on 7 parkingów w centrum miasta w kolejności od Rynku na zewnątrz.

Tabela nr 2.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Nazwa i lokalizacja wg mapy TIP</th>
<th>Liczba miejsc w systemie</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wratislavia Center / ul. Rzeźnicza 6-7</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Szewska Centrum ul. Szewska 3a</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Galeria Dominikańska pl. Dominikański 3</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Wratislavia Tower ul. Św. Antoniego 11</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Narodowe Forum Muzyki pl. Wolności</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>DH Renoma ul. Świdnicka</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td><strong>Suma w systemie SIP</strong></td>
<td><strong>3300</strong></td>
<td></td>
</tr>
</tbody>
</table>

System Informacji Parkingowej odpowiedzialny za pobieranie danych o stanie zajętości parkingów realizuje zadanie poprzez wyświetlanie informacji na Tablicach Informacji Parkingowej zlokalizowanych na dwunastu wielosegmentowych tablicach zmiennej treści, przedstawionych poniżej. Oprogramowanie działające w ramach Podsystemu Informacji Parkingowej oraz skrypty budujące aplikację WWW do zarządzania TIP znajdują się na serwerze ITSVVMSdb. Stanowisko Operatora powinno zawierać przeglądarkę internetową minimum Firefox 4.0 lub nowszą oraz zestawionym łączem internetowym umożliwiającym komunikację z serwerem ITS (aplikacja działa pod adresem IP 10.65.32.25).

Mapa nr 2 przedstawia lokalizację dwunastu tablic TIP.
Mapa nr 2. Obrazuje rozmieszczona dwunastu tablic TIP w centrum miasta Wrocławia
**Sposób działania automatu tablicowego**
Oprogramowanie służące monitorowaniu pracy TIP oraz wyświetlanej na nich treści na bieżąco weryfikuje listę informacji oraz priorytetów i decyduje, która z treści na zostać wysłana do sterownika. Dane o stanie zajętości parkingu wyświetlane są na TIP i mogą mieć kilka postaci.

Rysunek 1 – Informacja o wolnych miejscach w formie liczbowej

Rysunek 2 – Informacja o braku wolnych miejsc

W przypadku braku danych o stanie zajętości w bazie SIP, moduły w TIP dla danego parkingu – wyświetlają poniższy komunikat.

Rysunek 3 – Informacja o braku danych

Oprócz wyświetlania stanu zajętości parkingów w formie liczbowej [domyślnie] może być wyświetlana w formie procentowej albo graficznej jak niżej:

Rysunek 4 – Stan zajętości w formie procentowej
System Informacji Parkingowej umożliwia prognozowanie zajętości i trendy z wyprzedzeniem analizując historię napełniania w określonym przedziale czasu. Kilka zdjęć obrazuje stan zaawansowania systemu, zastosowane rozwiązania konstrukcyjne, a także jak system informacji parkingowej działał bez tablic o zmiennej treści:

**Rysunek 5 - Stan zajętości w formie graficznej**

Przykład TIP 005 na ul. Nowy Świat – wymiar segmentu 1450 mm*420 mm*4. Dolna krawędź min. 2700 mm, górna krawędź max. 5220 mm W tle informacyjna tablica zwykła.
Tablica informacyjna parkingowa na ul. Kazimierza Wielkiego pomiędzy ul. Krupnicza a ul. Zamkowa – TIP 004 w ujęciu w ciągu dnia oraz przy zachodzie słońca – dobra widoczność po zmroku. Wymiary tablicy zmiennej treści – moduł 1450 mm*420 mm* 5 elementów = 2100 mm, góra krawędź na wys. 5220 mm dolna na wys. 3500 mm

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Lokalizacja</th>
<th>Parkingi, których dotyczą wyświetlane informacje</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>ul. Świdnicka na rogu placu Generała Tadeusza Kosiuczycki</td>
<td>Szewska Centrum, Galeria Dominikańska, Renoma</td>
</tr>
<tr>
<td>12.</td>
<td>ul. Sądowa pomiędzy ul. Świebodzką a ul. Podwale</td>
<td>Narodowe Forum Muzyki, Szewska Centrum, Galeria Dominikańska</td>
</tr>
</tbody>
</table>

Tabela 1 Lokalizacje miejsc, w których są zainstalowane tablice parkingowe
Płatne parkowanie narzędziem zarządzania mobilnością?

Autor przeprasza za klepsydrową i monotonną, acz zamierzoną, formę wystąpienia, 7 lat minęło od „parkingowego” spotkania KLIR w Kielcach - a my nadal w tych sprawach „na wstecznym”.
KLIR a parkowanie pojazdów – jeżeli Zechcesz sięgnąć do historii to:

- Już 23 lata temu!, na spotkaniu Klubu, Jerzy Przybyłowicz poruszył „Problem parkowania i obsługi komunikacyjnej ...” w Łomży (Informacja nr 11 str. 18).
- „Wybrane problemy parkowania ...” w Olsztynie opisał w swoim mieście w 1992 r. Janusz Michałowicz (Informacja nr 14 str. 23).
- Na spotkaniu założycielskim Stowarzyszenia KLIR w 1993 r. Zygmunt Uzdalewicz przedstawił „Opinię w sprawie opłat za parkowanie ...” w związku ze zmianą ustawy o drogach publicznych – był to początek rozwiązań niefortunnych – a autor tegoż referatu opisał „Długą drogę do Strony” (wówczas ograniczonego postoju) – drugiej, po krakowskiej, strefie parkowania w Polsce (Informacja nr 16 str. 2 i 13).
- W trakcie IX Zjazdu Drogowców Miejskich w Rzeszowie w 1993 r. KLIR miał swój udział w formułowaniu wniosków na temat „Parkowania płatnego” (Informacja nr 18 str. 10).
- „Problemy parkowania płatnego w wybranych krajach UE”, na trzy lata przed wejściem Polski do UE, w Obornikach Śl. naświetlił Jerzy Narożny (Informacja nr 43 str. 47).
- Teorię i praktykę „Wybranych problemów polityki parkingowej...” na przykładzie Poznania, w Bielsku-Białej omówił w 2003 r. Aleksander Deskur (Informacja nr 48 str. 11).
- W Częstochowie w 2003 r. autor wraz z Wiesławem Bartoszewickim doszukiwali się „Szczęścia w nieszczęściu” podczas analizowania noweli ustawy o drogach publicznych w aspekcie opłat za parkowanie (Informacja nr 50 str. 26).
- Wreszcie, 7 lat temu, nieomal całość spotkania w Kielcach w 2007 r. poświęcono parkowaniu. (Informacja nr 62 str. 1 - 55). Obecnie organizator spotkania również to proponuje.
CO NOWEGO W UE

„Konieczne jest wprowadzenie zasadniczej zmiany w podejściu do mobilności w miastach w celu zapewnienia bardziej równoważonego rozwoju obszarów miejskich oraz realizacji celów UE związanych z tworzeniem konkurencyjnego i zasobooszczędnego europejskiego systemu transportowego”


„Wspólne dążenie do osiągnięcia konkurencyjnej i zasobooszczędnej mobilności w miastach”
Zatem, jak wiodący temat naszego spotkania widzą w Brukseli?

W cytowanym uprzednio dokumencie podkreśla się, że:

- „Istotne znaczenie ma ... wyeliminowanie fragmentarycznego podejścia oraz utworzenie jednolitego rynku dla innowacyjnych rozwiązań w obszarze mobilności w miastach poprzez podjęcie kwestii takich jak wspólne normy i specyfikacje lub wspólne udzielanie zamówień.”

- „Europejskie fundusze strukturalne i inwestycyjne powinny być wykorzystywane w bardziej systemowy sposób w przypadku finansowania zintegrowanych pakietów środków, jeżeli miasta opracowały zintegrowany plan transportu lokalnego, taki jak plan na rzecz mobilności w miastach zgodnej z zasadami zrównoważonego rozwoju, oraz określiły odpowiednie działania.”

- „... ważne jest, by mobilność w miastach pozostała znaczącym punktem programu politycznego UE. Komisja i państwa członkowskie powinny zwiększyć wsparcie udzielane władzom lokalnym tak, aby wszystkie miasta w Unii mogły osiągnąć zasadniczą zmianę w swoich działaniach, które mają doprowadzić do osiągnięcia konkurencyjnej i zasobooszczędnej mobilności w miastach.”
A tak bardziej konkretnie -
W ZAŁĄCZNIKU – „KONCEPCJA DOTYCZĄCA PLANÓW MOBILNOŚCI W
MIASTACH ZGODNEJ Z ZASADAMI ZRÓWNOWAŻONEGO ROZWOJU”

Plan mobilności w miastach zgodnej z zasadami zrównoważonego rozwoju:

• transport publiczny: „...należy zawrzeć strategię mającą na celu podwyższenie jakości, zwiększenie bezpieczeństwa i dostępności usług transportu publicznego oraz uściślenie integracji, obejmującą infrastrukturę, tabor i usługi”

• transport niezmotoryzowany: „... powinien zawierać plan dotyczący zwiększenia atrakcyjności i bezpieczeństwa poruszania się pieszo i rowerem. Należy przeprowadzić ocenę istniejącej infrastruktury i wprowadzić konieczne zmiany. ..... Środki infrastrukturalne powinny zostać uzupełnione innymi środkami technicznymi, środkami strategicznymi i miękkimi środkami.”

• zarządzanie mobilnością: „... powinno obejmować działania sprzyjające przechodzeniu na bardziej zrównoważone wzorce mobilności.”

a zatem transport publiczny i niezmotoryzowany winien stawać się konkurencyjnym wobec transportu indywidualnego.
Prawo winno sprzyjać, a nie utrudniać, oddziaływaniu na mobilność – dwa aspekty.

Dawniej:
1. do lutego 1993 r. - art. 13 ust. 2a ustawy o drogach publicznych „gmina może określić miejsca poza drogami krajowymi(1), w których pobiera się opłaty za parkowanie pojazdów, wysokość tych opłat, sposób ich pobierania oraz przeznaczenie” (Radni wiedzieli co jest dla ich gminy najlepsze i jak kształtować zależność pomiędzy podażą a popytem na parkowanie a co za tym idzie na sposób korzystania z przestrzeni komunikacyjnej swojej gminy.)

2. „czerwona książeczka”: 5.2.50 „Znak D-44 „strefa parkowania” (rys. 5.2.50.1) stosuje się w celu wskazania strefy (i słowo strefa było tutaj kluczowe !), w której w ciągu całej doby lub w określone dni tygodnia lub w określonych godzinach za pośrednią pobierana jest opłata. W strefie oznakowanej znakiem D-44 postój w czasie wskazanym na znaku, bez wniesienia opłaty jest zabroniony.

Obecnie:
1. art. 13b ust. 4 ustawy o drogach publicznych „Rada gminy (rada miasta), ustalając strefę płatnego parkowania: 1) ustala wysokość stawek opłaty, o której mowa w art. 13 ust. 1 pkt 1, z tym że opłata za pierwszą godzinę parkowania pojazdu samochodowego nie może przekraczać 3 zł;” (i tak jest od ponad dziesięciu lat!) (Posłowie postanowili pokazać Radnym jak kształtować zależność pomiędzy podażą a popytem na parkowanie a co za tym idzie jak „wypływać” na zrównoważoną mobilność.)

2. Znak D-44 „strefa płatnego parkowania” (rys 5.2.50.1) stosuje się w celu wskazania strefy, w której w określone dni robocze, w określonych godzinach lub całodobowo pobierana jest opłata za pośredni postój pojazdu samochodowego.
   • W strefie oznakowanej znakiem D-44 miejsca dla postoju pojazdu samochodowego wyznacza się znakami pionowymi określonymi w pkt 5.2.18 (znak D-18 „parking”) oraz znakami poziomymi określonymi w załączniku nr 2 do rozporządzenia w: pkt 5.2.4 (linia P-18 „stanowisko postojeowe”), pkt 5.2.5 (linia P-19 „pas postojeowy”), pkt 5.2.6 (linia P-20 „stanowisko postojeowe zastrzeżone”) i pkt 5.2.9.2 (symbol P-24 „miejsce dla pojazdu osoby niepełnosprawnej”).
ASPEKT 1 - SKUTKI OBSTRUKCJI CENOWEJ

- obecnie - w 2014r. wg inflacji, cena godziny parkowania jest tyle samo co 20 lat temu !!!, a za placę minimalną można kupić 560 godzin parkowania - czyli grubo ponad 2 razy więcej niż 20 lat temu !!!
- ergo cena nie jest w Polsce elementem zmniejszania popytu na parkowanie – a co za tym idzie ograniczania użycia auta na rzecz np. transportu publicznego

CENA ZA 1 (pierwszą) GODZINĘ PARKOWANIA - PŁACA MINIMALNA - INFLACJA

poziom zaakceptowany przez Radnych w Uchwale z 1992 r.

poziom narzucony przez Sejm RP w 2003 r.

wzrost na podstawie najniższych godzin parkowania za placę minimalną

niezależnie od godziny parkowania

napełnienie max. SPP [%]

zł/godz parkowania

zł/godz parkowania wg inflacji

inflacja
ASPEKT 1 – REDUKCJA ROTACJI NA MP

- rozwój bardzo złych tendencji; wzrost postojów długotrwałych kosztem malejącej rotacji na miejscach postojowych (MP)
- ergo sytuacja odwrotna do zamierzonej w UE poprawy zrównoważonej mobilności

POJAZDY Z BILETAMI Z PARKOMATÓW W SPP LATA 2001 - 2013
ASPEKT 2 – NIE MA TO JAK ZNAKI?

- przestrzeń bezkarności dla parkujących sprzecznie z prawem bez opłaty - obecnie jest to co 15 parkujący, niebawem zabraknie miejsc nielegalnych!
- ergo nie liczba znaków a zwykle i konsekwentne egzekwowanie przepisów jest decydujące

ŁATWIEJ PARKOWAĆ SPRZECZNIE Z PRAWEM NIŻ PŁACIĆ ZA POSTÓJ
ASPEKT 2 – EGZEKUCJA OPŁAT A WYBÓR SPOSOBU PODRÓŻY

- niecałe 2/3 parkujących płaci za postój – pozostalym opłaca się użyć auta – jest o cenę postoju tańsze od biletu na autobus czy tramwaj

PRZECIĘTNY GODZINOWY PODZIAŁ POSTOJÓW Z WYMAGANYM BILETEM (2013 r.)

Aby oddziaływanie dobrego przykładu było skuteczne, szacuje się, że odsetek "wezwanych" do opłaty winien wynosić 25% a nie zaledwie 13%; kierujący autem nie zmieni sposobu podróży do centrum z auta na rower czy tramwaj przy tak małej szansie "na wypadku" bez biletu.

bez biletu "wezwani 13%"
bez biletu "nie wezwani 8,7%"
z biletom

wymóg wniesienia opłaty biletem
Przedstawione powyżej rozważania mają na celu dać tło do ostatniej zmiany rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z 23 września 2013r. dotyczącej znaków D-44/D-45. Czuję się zobowiązany do przytarczenia wybranych uwag Członków KLIR oceniających ten akt prawa, gdyż nie jest prawdą, że nikt nie zabiera głosu, choć są to głosy wolających na puszczy:

- "Oznakowanie SPP znakami D-44/D-45 ma sens wówczas, kiedy eliminuje się tym sposobem dużą liczbę znaków D-18 i pochodnych wyznaczających miejsca postojowe na poszczególnych odcinkach ulic w strefie... Znamieszanie wprowadziło rozporządzenie ...nakazujące konieczność dodatkowego wyznaczania znakami pionowymi D-18 i poziomymi miejsc postoju w SPP...."

- „Oboje w moim mieście parkowanie w strefie płatnego postoju, która obejmuje ulice w ścisłym centrum, odbywa się w zasadzie w oparciu o przepisy Prawa o ruchu drogowym. Na odcinkach ulic, gdzie postój pojazdów powodowałby utrudnienia w ruchu obowiązują znaki zakazu zatrzymania się... W mojej interpretacji mogę... opierając się na w/w przepisach... spokojnie bezpłatnie zaparkować pojazd na chodniku, na którym zarządcą drogi nie wyznaczył „legalnego płatnego” parkowania ponieważ np. jest za wysoki krawężnik i istnieje ryzyko uszkodzenia opon lub stan chodnika jest zły i nie jest zasadne narażanie go na dalszą degradację... mój Referat będzie opracowywał projekty, uzyskiwał opinie Policji, kosztem innych spraw. Nie bez znaczenia jest koszt nowej organizacji ruchu, satki nowych znaków typu D-18 oraz B-36..."

- „To co zasugerowało Ministerstwo to... jest swoiste deja vu. Do niedawna większość obszarów naszej strefy opierała się o odcinkowość. Co to oznacza? Znaki D-44 stawiane były na początku odcinka poboru opłaty, a D-45 na końcu. W praktyce było to najbardziej patologiczne rozwiązanie jakie można sobie wyobrazić. ...dochoǳiło do tego, że na miejscach postojowych stało kilka pojazdów, a przed i za odcinkiem wyznaczonym znakami kilkanaście... najczęściej były to postoje na przejściach dla pieszych, w obrębie skrzyżowań, na chodnikach zbyt węskich do parkowania, na wjazdach... możliwe to było przede wszystkim z uwagi na słabość służb porządkowych, ale nie sądzę, żeby zmiana oznakowania w jakikolwiek sposób te służby wzmościła. Natomiast eliminuje z procesu egzekucji przepisów służby parkingowe zarządcy drogi. Z naszego doświadczenia to właśnie one gwarantują największą nieuchronność kary ...

z życzeniami: więcej inżynierów ruchu a mniej prawników na drogach
Piotr Jan Graczyk
Analiza lokalizacji parkingów Park and Ride w województwie małopolskim wzdłuż korytarzy planowanej kolei aglomeracyjnej SKA

System P&R tworzy układ parkingów zlokalizowanych na zewnątrz obszaru śródmieścia w miejscach gdzie bardzo łatwo dostać się samochodem. Tego typu parkingi mają określony cel – poprawę dostępności centrów miast. Mają one zachęcić tych, którzy normalnie wjechaliby do miasta samochodem, do zaniechania potegowania negatywnych skutków nadmiernego ruchu samochodowego poprzez przesiadkę na komunikację publiczną. Układ parkingów Park and Ride jest ściśle powiązany zarówno z komunikacją zbiorową, komunikacją indywidualną i stanowi część układu transportowego miasta. Parkingi powinny być usytuowane w pobliżu dróg wjazdowych do miasta, zapewniając możliwość wjazdu na parking oraz szybką i komfortową przesiadkę na pojazdy komunikacji zbiorowej. Zatłoczone ulice i brak miejsc parkingowych to coraz częstszy problem większości polskich i zagranicznych miast. System P&R to zarówno wydajny jak i skuteczny system łączący zalety samochodu oraz komunikacji zbiorowej. Dyspozycyjność, elastyczność, wygoda oraz wysoka efektywność wykorzystania przestrzeni ruchu to cechy najważniejsze dla podróżujących, którzy nie chcą z nich rezygnować. Wówczas należy zastosować takie rozwiązanie, aby połączyć ze sobą wszystkie te czte-

Rys. 1 Znak pionowy systemu P&R w Wielkiej Brytanii
ry cechy. Stworzenie odpowiedniego systemu informacji o parkingach P&R jest warunkiem zaинтересowania potencjalnych użytkowników korzyściami, jakie mogą osiągnąć z korzystania z tych parkingów. Wysoki wskaźnik motoryzacji, wysokie natężenie ruchu na drogach wjazdowych do miasta, wysokie opłaty za parkowanie w centrum miasta to tylko niektóre z powo-dów które mogą zachęcić osoby mieszkające na peryferiach do skorzystania i wypróbowania systemu Parkuj i Jedź. Należy jednak pamiętać, że nie jest możliwym zapewnienie sprawnej sieci transportu publicznego o wystarczającej jakości w przypadku, gdy źródła i cele są bardzo rozproszone.

Parkingi tego typu nie mogą powstawać bez bardziej kompleksowej strategii zrównoważonego przemieszczania się. Strategia taka zawsze składa się z dwóch podstawowych dziedzin działań. Po pierwsze zwiększenia atrakcyjności transportu publicznego i indywidualnego niezmotoryzowanego, a po drugie zmniejszenie atrakcyjności dojeżdżania do celu samochodami. Obydwa warunki muszą być ze sobą ściśle związane. Spełnienie pierwszego wymaga bardziej kompleksowych działań. Środki transportu mające stanowić alternatywę dla samochodu muszą być atrakcyjne, szybkie oraz bezpieczne. Zazwyczaj jednak działanie w stronę zrównoważonej mobilności przeprowadzane są w obszarach, w których ruch samochodowy jest na tyle duży, że konieczne są dodatkowe środki przyśpieszenia komunikacji miejskiej. Parkingi Park & Ride jeżeli będą lokowane w rozsądnych punktach na obrzeżach miast, mogą zachęcić do przesiadki na transport publiczny kilka procent spośród dojeżdżających do miasta. Park & Ride tworzy układ, który ma ściśle określony cel oraz silne i nierozwalne interakcje zarówno wewnętrzne (powiązanie układu

Rys. 2 Lokalizacja parkingów rowerowych P&R w Warszawie
parkingów zarówno z komunikacją zbiorową jak i komunikacją indywidualną), jak i zewnętrzne (stanowi część układu komunikacyjnego miasta). Do elementów P&R można zaliczyć: samochód osobowy oraz kierowcę, układ drogowy umożliwiający dojazd ze źródła podróży do przystanku, parking oraz linie komunikacji zbiorowej. Otoczenie układu stanowią zasady korzystania z parkingu, taryfy, oznakowanie, informacje o warunkach ruchu, część układu drogowego, linie komunikacji zbiorowej, potoki w ruchu ulicznym i potoki pasażerskie w pojazdach. Do cech układu można zaliczyć: przepustowość przekrojów ulicznych, zdolność przewozową, napełnienie oraz czas podróży.

W ramach prezentacji, poddano szczegółowej analizie lokalizacje parkingów Park & Ride w województwie małopolskim wzdłuż korytarzy planowanej kolei aglomeracyjnej SKA. Zakres prezentacji będzie obejmował:

- charakterystykę parkingów przesiadkowych ze szczególnym uwzględnieniem ich powiązania z koleją
- egzegzę dokumentów planistycznych związanych z koncepcją kolei aglomeracyjnej SKA (przebieg i lokalizacja przystanków)
- analizę możliwości terenowych dla lokalizacji parkingów przesiadkowych przy każdym z planowanych przystanków
• weryfikację charakteru własności terenów przy przystankach kolejowych (rozróżnienie na tereny prywatne, gminne, należące do PKP lub Skarbu Państwa)
• wskaźnikowe określenie zalecanej pojemności parkingów przesiadkowych.

Rys. 4 Parking Park & Ride - Czerwone Maki, Kraków
Parkingi Obrotowe szansą dla zatłoczonych miast

Streszczenie: Artykuł przedstawia najczęściej stosowane rozwiązania funkcjonalno – techniczne obiektów służących jako parkingi a także krótką charakterystykę nowoczesnych konstrukcji, projektowanych z zamierzeniem zmniejszenia wymaganej powierzchni zabudowy przy zachowaniu ilości zaparkowanych pojazdów. W artykule omówiono nieco bliżej jeden z typów mechanicznych parkingów jakim jest modelowy parking obrotowy wraz z przedstawieniem jego zalet oraz obszarów zastosowania.

Słowa kluczowe: parking obrotowy, parking mechaniczny.

Wprowadzenie

Wedle bieżących statystyk średni koszt poniesiony na zakup jednego miejsca postojowego w osiedłowym garażu podziemnym wynosi około 30 tys. zł. Kwota znacząca, stąd kierowcy niejednokroć nie decydują się na zakup miejsc postojowych pozostawiając samochody w miejscach niezdozwolonych. Warto nadmienić, że cena zakupu miejsca postojowego (~30 tys. zł) równoznaczna jest
z kosztem, jaki poniósłby kierowca pozostawiając samochód w miejscu niedозвolonym, płacąc codzienne mandaty przez okres około 2 lat! Wniosek płynący z takiego zestawienia jest prosty: należy obniżyć ceny miejsc postojowych.

**Fot.1** Konsekwencje wynikające z braku miejsc postojowych [3]

Polityka parkingowa w latach wznoszenia osiedli z wielkiej płyty nie prognozowała takiego przyrostu samochodów osobowych, – przez co mieszkańcy tychże osiedli odczuwają ogromny deficyt miejsc postojowych. Sytuacja w ciasnych uliczkach centrów miast nie jest lepsza. Zastawione bramy wjazdowe do posesji, chodniki, przejazdy awaryjne, przejścia dla pieszych czy tereny rekreatyczne to codzienność próby zaparkowania w mieście.

Warto nadmienić, że Polska nie jest jedynym krajem, który boryka się problemami parkingowymi w miastach. Na świecie powstają różne rozwiązania mające na celu problem ten ograniczyć.
Rozwiązania technologiczne parkingów


Część niewykorzystana przez większość roku mogłaby pełnić inną funkcję: handlową, mieszkaniową czy usługową jednak jest to niemożliwe ze względu na krótki okres pełnego wykorzystania przestrzeni parkingowej. Rozwiązaniem jest ograniczenie terenu zajętego pod zabudowę parkingową bez ograniczenia ilości miejsc parkingowych oraz bez zmniejszania komfortu użytkowania parkingu.
Odpowiedzią na ten problem są obecnie rozpowszechnione i zdecydowanie bardziej oszczędne w ilości zajmowanego terenu parkingi wielopoziomowe nad- i podziemne. Poza znacznym ograniczeniem wymaganej przestrzeni mają inne zalety jak np. ochrona samochodów przed wpływami atmosferycznymi.

Szacuje się, że miejsca postojowe w typowych rozwiązyaniach naziemnych czy podziemnych stanowią wciąż jedynie 30 % całkowitej powierzchni. Pozostała powierzchnia zostaje przeznaczona na drogi dojazdowe, wyjścia ewakuacyjne, otoczenie itp.

By znacząco zredukować wymaganą powierzchnię dla parkingu zaczęto konstruować mechaniczne parkingi wielopoziomowe. Główną ideą tych nowoczesnych rozwiązań jest ograniczenie powierzchni zabudowy oraz minimalizacja powierzchni dróg dojazdowych, placów manewrowych, komunikacji między poziomowej do minimum. Stosunek powierzchni miejsca postojowego do powierzchni zabudowy jest wielokrotnie wyższy niż w rozwiązyaniach tradycyjnych.

Przykładem takiego rozwiązania są automatyczne parkingi naziemne Car Towers. Ilość miejsc parkingowych w takich obiektach może dochodzić nawet do 200 miejsc. Istnieje możliwość łączenia konstrukcji w moduły.

Fot.3 Przykład zastosowania parkingu wieżowego jako formy reklamowej [5]
Zastosowanie zwrotnicy pozwala na różnorodne formy konstrukcji. Wieże parkingowe stanowią również formę pokazową. Bardzo dobra szansa na wykorzystanie konstrukcji w celach marketingowych.

Kolejną alternatywą dla parkingów tradycyjnych są parkingi automatyczne podziemne, gdzie strefa wjazdowa znajduje się na najwyższym poziomie parkingu. Całość operacji parkowania, układania i wydawania samochodów odbywa się automatycznie.

Wadą tego rozwiązania jest niewątpliwe koszt wykonania obiektu. Odpowiednie wzmocnienie ścian przed parciem
gruntu generuje dużo większe koszty w odniesieniu do konstrukcji naziemnej, w której głównym czynnikiem obciążającym konstrukcje poza ciężarami własnymi pojazdów jest wiatr.

Wspomniane powyżej parkingi występują w różnych konfiguracjach na świecie jednak łączy je jedna wspólna cecha jaką jest konieczność stworzenia wspólnego „szybu” – obszaru wyłączonego z przestrzeni postojowej w którym, w kierunku poziomym lub pionowym przemieszczają się pojazdy na swoich platformach. Jest to jedne pole o powierzchni kilkudziesięciu metrów kwadratowych niewykorzystane na właściwe parkowanie pojazdów.

Dobrym kompromisem pomiędzy ceną za miejsce parkingowe a wydajnością jest zastosowanie parkingów obrotowych stanowiących połączenie stalowej konstrukcji nośnej z mechanizmem podnoszenia.

Koszt miejsca parkingowego w takim rozwiązaniu jest o ok 20% niższy niż w przeciętnym wielopoziomowym parkingu kubaturowym.

Schemat działania obiektów tego typu jest dość prosty. Użytkownik, tu: kierowca wjeżdża na najniższą platformę i opuszcza pojazd. Zestaw czujników nie zezwala na jakikolwiek ruch mechanizmu parkingu podczas obecności człowieka wewnątrz obiektu. Po opuszczeniu obiektu kierowca uruchamia mechanizm parkingu za pomocą panelu sterującego. Platformy wyko-

Fot.6 Wizualizacja parkingu obrotowego – koncepcja WIMED [8]
nując ruch okrężny zgodny bądź przeciwny do ruchu wskazówek zegara wzdłuż specjalnych prowadnic ustawiają się w taki sposób by pusta platforma znalazła się w położeniu najniższym gotowa na przyjęcie następnego pojazdu.

Odbiór samochodu przebiega w sposób odwrotny. Najpierw użytkownik wybiera właściwy numer platformy za pomocą panelu sterującego przywołując pojazd na najniższy poziom, po czym mechanizm zostaje zatrzymany umożliwiając kierowcy swobodne wyjście z parkingu.

Maksymalny czas oczekiwania w zależności od ilości miejsc postojowych waha się od 2 do 4 minut.

Do największych zalet tego typu rozwiązań można zaliczyć:
> konstrukcja stawiana na powierzchni o wymiarach: 6,5x5,5 m,
> jeden obiekt wystarcza na 8-12 samochodów osobowych,
> niskie koszty eksploatacji,
> różnorodne zabudowy – wykorzystane w celach reklamowych,
> estetyczny wygląd obiektu,
> precyzyjna i cicha praca mechanizmów,
> wbudowane czujniki stref bezpieczeństwa i sygnalizatory fazy pracy,
> otwieranie parkingu i wydawanie pojazdu za pomocą karty kredytowej, indywidualnego pinu lub opłacenie gotówką w automacie.

Na tle innych typów parkingów naziemnych parkingi obrotowe wy- różniają się:
> możliwością rezygnacji z oświetlenia całości parkingu,
> małą powierzchnią zabudowy przy maksymalnym jej wykorzysta- niu do tworzenia miejsc postojowych,
> nie wymagają odśnieżania i wywożenia śniegu,
> eliminacją wykonywania oznakowania poziomego na nawierzchni,
> ochroną samochodów przed wpływami warunków atmosferycz- nych,
> dodatkową ochroną przed kradzieżą.
Na tle parkingów podziemnych wyróżniają się:

> niższym kosztem budowy m² powierzchni parkingowej niż podziemnego,

> eliminacją całkowitą lub częściową oświetlenia, (oświetlenie parkingu podziemnego jest dość kosztowne, również w czasie eksploatacji), oznakowania poziomego,

> nie wymagają wentylacji (system wentylacyjny parkingów podziemnych jest bardzo drogi).

Do listy zalet należy dopisać te wymieniane przez użytkowników tego typu obiektów z całego świata m.in. bezpieczeństwo parkowania, brak kolizji, stłuczek, brak problemu z wjazdem na miejsce postojowe niejednokroć pomiędzy dwa nie do końca poprawnie zaparkowane pojazdy, brak spacerujących na parkingu zakupowiczów itp.

Fot.7 Wizualizacje parkingu obrotowego z propozycją elewacji [9]
Podsumowanie

Reasumując należy podkreślić, że parkingi obrotowe dają nową możliwość pozyskiwania relatywnie tanich miejsc parkingowych tam, gdzie nie ma już technicznej możliwości wybudowania wielopoziomowego parkingu naziemnego czy podziemnego. Wykorzystanie plomb budowlanych na parkingi dla kilku lub kilkunastu samochodów daje szanse nowych miejsc na parkowanie samochodów przy budynkach mieszkalnych, administracji, instytucji, firm itp., których lokalizacja znajduje się w zatłoczonych centrach miejskich.

Literatura:

[8] [9] Materiały własne
Możliwości zagospodarowania przestrzeni około parkingowych oraz MOP z wykorzystaniem elementów Fitness Outdoor

Pojawiające się w Polsce nowe i coraz dłuższe odcinki autostrad i dróg ekspresowych dają szansę efektywnego zagospodarowania przyległych wokół nich terenów. Równocześnie z budową dróg powstają stacje paliw, restauracje, oraz miejsca obsługi podróżnych, popularnie zwanych MOP.
Standardowe zagospodarowanie MOP stanowią:
• miejsca parkingowe
• toalety
• altany i wiaty
• okazjonalnie restauracje, motele
• okazjonalnie place zabaw dla dzieci i rekreacji dla podróżnych

Istotną sprawą przy organizacji MOP jest zapewnienie kierowcom i podróżującym możliwości odpoczynku i regeneracji, możliwości poprawy kondycji fizycznej i odbudowy potencjału potrzebnego do kontynuacji pracy za kierownicą i podróży. Charakterystyczną cechą zagospodarowania MOP jest duża przestrzeń zielona wokół zabudowań.

Wiązając możliwości terenu oraz funkcjonalność obiektu ciekawym rozwiązaniem jest wyposażenie miejsca w urządzenia zapewniające aktywny wypoczynek i rekreację a stosowane już w przestrzeni miejskiej pod nazwą fitness outdoor.

Celem instalacji urządzeń rekreacyjnych fitness outdoor jest stworzenie miejsc służących społeczeństwu a mających na celu aktywny wypoczynek i rekreację na świeżym powietrzu.

Urządzenia rekreacyjne fitness wykonywane są w formie wolnostojących instalacji montowanych w podłożu, mających zgodnie z projektem różne funkcje rekreacyjne. Ideą i przeznaczeniem urządzeń jest odwzorowanie
ruchów i ćwiczeń takich jak marsz, ruchy skrętne, orbitalne, wyciskanie górne
dolne itp. Urządzenia umożliwiają ćwiczenia jednej lub kilku osób równocześnie
w zależności od funkcji. W większości rozwiązań obciążenie stanowi waga ćwi-
czącego lub naturalny opór urządzenia. Obciążenia dobierane są w taki sposób
aby umożliwić rekreację i aktywny wypoczynek. Realizacja ruchów odbywa się
dzięki odpowiedniemu układowi kinematycznemu elementów funkcjonalnych
urządzeń takich jak drążki, stopki, dźwignie, koła itp. Urządzenia te wykonywane
są rur, kształtowników i blach połączonych w układy kinematyczne za pomocą
łożysk kulowych i ślizgowych. Zabezpieczenie antykorozyjne stanowi powło-
ka cynkowa oraz warstwa farby nakładana proszkowo w dowolnej kolorystyce
w zależności od uzgodnień i lokalizacji.

Obecnie urządzenia rekreacyjne fitness outdoor instalowane są :
• w miejskich parkach w celu stworzenia warunków aktywnego wy-
poczynku
• na placach zabaw jako uzupełnienie urządzeń dla dzieci o urządze-
nia dla młodzieży i dorosłych
• w obrębie dużych skupisk zamieszkania jako stworzenie miejsc spotkań i rekreacji
• w zielonych obszarach poza miejskich takich jak ścieżki zdrowia jako uzupełnienie ich funkcji
• w centrach mniejszych miejscowości jako stworzenie miejsc wypoczynku i rekreacji

Przykładem urządzeń fitness outdoor które znalazłyby wykorzystanie na miejscach obsługi podróżnych są:
• symulator ruchów wahadłowych
• symulator chodu rekreacyjnego
• symulator orbitalny
• drabinka do podciągania

Symulator ruchów wahadłowych umożliwia wykonywanie rekreacyjnych ruchów wahadłowych. Ćwiczenia na wahadle uaktywniają mięśnie brucha i bioder, poprawiają koordynację ruchową i ogólną kondycję fizyczną.

Symulator chodu rekreacyjnego umożliwia stacjonarne spacerowanie. Dzięki urządzeniu możliwe jest realizowanie funkcji rozciągania oraz treningi

Wahadło

Chodziarz
Cardio. Ćwiczenia tego typu uaktywniają mięśnie nóg i poprawiają układ krążeniowy i oddechowy.

Symulator orbitalny umożliwia ćwiczenia wykonywane podczas marszu rekreacyjnego z kijami. Poprawia kondycję mięśni nóg ramion i tułowia. Korzystnie wpływa na koordynację ruchową oraz układ krążeniowy i oddechowy.

Drabinka do podciągania umożliwia ćwiczenia gimnastyczne i rozciąganie. Uaktywnia mięśnie pleców, ramion, brzucha, oraz poprawia koordynację ruchową.

Obciążenie we wszystkich opisywanych urządzeniach stanowi waga ciała ćwiczącego. Ćwiczenia których wykonywanie umożliwiają urządzenia outdoor bardzo korzystnie wpływają na człowieka w trakcie podróży, który ten czas spędza w pozycji siedzącej, ponieważ uaktywniają najbardziej obciążone mięśnie, poprawiają koordynację, koncentrację i ogólną kondycję fizyczną.

Przy projektowaniu i organizacji miejsca obsługi podróżnych MOP warto wziąć pod uwagę potrzeby podróżujących i zapewnić im możliwość aktywnego wypoczynku. Chwila aktywności fizycznej w trakcie przerwy w podróży przywróci zużytą podczas jazdy energię, poprawi koncentrację a co za tym idzie zwiększy dyspozycję do kontynuacji jazdy wpływając jednocześnie na poprawę brd.
Uspokojenie ruchu - doświadczenia, problemy, potrzeby. Miasteczko Holenderskie w Puławach - doświadczenia w uspokojeniu ruchu po latach

1. Wstęp

Bezpieczeństwo ruchu drogowego i ochrona środowiska mają na celu ochronę zdrowia i życia człowieka przed negatywnymi skutkami transportu. Głównymi czynnikami, które decydują o zagrożeniu wypadkami, emisji hałasu i pozostałych zanieczyszczeń są prędkość pojazdów i natężenie ruchu. Na obydwia te czynniki jednocześnie można wpływać poprzez zastosowanie środków uspokojenia ruchu drogowego. W niniejszym referacie przedstawiono wpływ wprowadzenia strefy ruchu uspokojonego na poprawę bezpieczeństwa i zmniejszenie oddziaływań akustycznych w oparciu o studium przypadku: przebudowę odcinka drogi wojewódzkiej nr 824 w Puławach, które zostało zrealizowane w ramach projektu Miasteczko Holenderskie.

2. Wybrane niekorzystne oddziaływania ruchu drogowego na człowieka

Rozwój sieci dróg i transport drogowy stanowią nieodłączne elementy naszej cywilizacji i są przejawem pozytywnych zjawisk takich jak wzrost gospodarczy i postęp społeczny. Jednocześnie ruch pojazdów powoduje negatywne oddziaływania i zagrożenie dla człowieka. Najważniejszym z nich jest ryzyko utraty życia lub zdrowia w wyniku wypadku. Pod tym względem głównym zagrożeniem w ruchu drogowym jest nadmierna prędkość pojazdów. Im jest ona większa tym trudniej uniknąć wypadku i tym poważniejsze są obrażenia u ofiar.

W Polsce nadmierna prędkość jest przyczyną ok. 30% wypadków śmiertelnych. W 2012 r. wypadki, w których uczestniczący w nich kierowcy jechali...
z prędkością niedostosowaną do warunków ruchu stanowiły 27% wypadków na drogach powiatowych, 25% wypadków na drogach krajowych i 21% wypadków na drogach wojewódzkich [1]. Przekraczanie dozwolonej prędkości w dalszym ciągu jest w Polsce zjawiskiem powszechnym. Zgodnie z raportem wykonanym na zlecenie Krajowej Rady Bezpieczeństwa Ruchu Drogowego w 2013 r. na drogach miejskich oraz na ulicach dwujezdniowych w miastach średnio w ciągu doby 80% kierowców przekraczało dozwoloną prędkość, przy czym 16% stanowiły przekroczenia o więcej niż 20 km/h. Z kolei, na przejściach dróg krajowych przez miasta i wsie, kierowcy przekraczający limit prędkości stanowili średnio w ciągu doby 83%, a przekroczenia o więcej niż 20 km/h stanowiły 26% [2].

Nagminne przekraczanie ograniczeń prędkości jest zagrożeniem zwłaszcza dla niechronionych uczestników ruchu: pieszych i rowerzystów. Polska niestety przoduje w tej niechlubnej statystyce: w naszym kraju piesi stanowią ok. 32% zabitych w wypadkach (dla porównania średnia w Unii Europejskiej wynosi 20%). Przykładowo, przy potrąceniu pieszego przez samochód jadącego z prędkością 50 km/h prawdopodobieństwo, że poniesie on śmierć, jest bliskie 90%. Natomiast jeśli do potrącenia dojdzie przy prędkości 30 km/h pieszy ma 90% szans na przeżycie. Zależność tę ilustruje poniższy rysunek.

![Rys. 1. Zależność pomiędzy prędkością pojazdu i prawdopodobieństwem śmierci pieszego w wyniku zderzenia [6]](image-url)
Sąsiedztwo drogi lub ulicy, po której poruszają się samochody z dużymi prędkościami powoduje niekorzystne oddziaływania środowiskowe, które są przyczyną pogorszenia kondycji zdrowotnej osób mieszkających w ich otoczeniu. Do tych oddziaływań należą przede wszystkim hałas, ale również zanieczyszczenia powietrza, gleby czy wód powierzchniowych i podziemnych.

Według raportu Europejskiej Agencji Środowiska [3] około 40% ludności mieszkającej w największych miastach Unii Europejskiej może być narażone na średnie długookresowe poziomy hałasu generowanego przez ruch drogowy, które przekraczają 55 dB. Natomiast prawie 34 mln osób może być narażonych na długookresowe poziomy hałasu generowanego przez ruch drogowy, które przekraczają 50 dB w porze nocy. Są to wartości uznawane za dokuczliwe dla człowieka.

Hałas, jaki powstaje podczas ruchu drogowego generowany jest m.in. przez: silnik i układ napędowy pojazdu, oddziaływanie opon z nawierzchnią drogi, opory aerodynamiczne wytwarzane przez krawędzie pojazdu oraz uderzające o siebie elementy samochodów (głównie ciężarowych) i przewożonego ładunku. Parametrami decydującymi o poziomie hałasu są przede wszystkim: natężenie ruchu, prędkość pojazdów oraz udział w potoku ruchu tzw. pojazdów hałaśliwych - samochodów ciężarowych i motocykli. Bardzo istotne znaczenie na wielkość generowanego hałasu ma prędkość jazdy. Należy dodać, że jest to czynnik pozostający pod największą kontrolą zarządów dróg. Nie mają oni natomiast dużego wpływu na strukturę rodzajową ruchu czy na stan techniczny pojazdów poruszających się po drogach.

Należy wspomnieć, że ruch drogowy jest również źródłem emisji substancji szkodliwych do powietrza: głównie dwutlenku węgla, tlenków azotu, węglowodorów aromatycznych, metali ciężkich oraz pyłów zawieszonych (PM10 i PM2.5), a także jest źródłem drgań odczuwanych na terenach przyległych do drogi.
3. Możliwości łagodzenia uciążliwości tras komunikacyjnych dzięki wprowadzeniuuspokojenia ruchu

Jak powszechnie wiadomo, samo wprowadzenie oznakowania określającego prędkość dopuszczalną na danym odcinku drogi nie gwarantuje, że kierowcy będą przestrzegać tego ograniczenia. Ponieważ samo oznakowanie jest niewystarczające, wprowadza się dodatkowe elementy, które są w stanie w sposób automatyczny wyegzekwować przestrzeganie określonej prędkości. W zależności od tego, jaką funkcję ma pełnić droga lub ulica, poza wprowadzeniem odpowiedniego oznakowania informującego o maksymalnej prędkości dopuszczalnej, powinny się pojawić odpowiednie ukształtowanie geometrii oraz elementy wyposażenia drogi lub ulicy, które spowodują faktyczne ograniczenie prędkości. Jest to tzw. fizyczne uspokojenie ruchu za pomocą środków technicznych, które wywołuje pożądane zachowania uczestników ruchu, a jednocześnie zapobiega zachowaniom niepożadanym poprzez uniemożliwienie lub znaczące utrudnienie określonych zachowań, takich jak jazda z prędkością wyższą od dopuszczalnej, wyprzedzanie, skręcanie z niewłaściwego pasa ruchu itp.

Uspokojenie ruchu polega na takim kształtowaniu środowiska drogowego za pomocą środków planistycznych i inżynieryjnych, które pozwoli na osiągnięcie kompleksowego efektu poprawy bezpieczeństwa ruchu użytkowników dróg, zmniejszenia uciążliwości transportu i polepszenia funkcjonowania przestrzeni publicznej w obszarach zabudowanych. Zasadniczym i podstawowym sposobem na poprawę bezpieczeństwa jest zapewnienie odpowiednio niskiej prędkości ruchu pojazdów. Głównym celem uspokojenia ruchu jest doprowadzenie do trwałego spadku liczby zabitych, rannych oraz wypadków. Wynika to z faktu, że przy zmniejszona prędkości jazdy łatwiej jest uniknąć zderzenia, a jego skutki są mniej poważne. Spadek liczby kolizji (zdarzeń, w których wystąpiły tylko straty materialne) jest zazwyczaj najmniej odczuwalny. Przy tej okazji należy zwrócić uwagę, że w większości przypadków rozwiązań te mają na celu przede wszystkim doprowadzenie prędkości pojazdów do wartości zgodnej z ograniczeniami obowiązującymi na danym odcinku drogi, ulicy lub na danym obszarze.

Drugim ważnym elementem uspokojenia jest poprawa płynności ruchu. Polega on na stworzeniu warunków umożliwiających utrzymanie w miarę jednostajnej, bezpiecznej prędkości jazdy, dzięki zmniejszeniu liczby spowolnień i przyspieszeń pojazdu. Działania te są ukierunkowane na zmniejszenie zagrożeń wszystkich uczestników ruchu, a jednocześnie na ograniczenie oddziaływań środowiskowych i w efekcie na poprawę jakości życia ludzi.
Uspokojenie ruchu jest z reguły wprowadzane na znacznym obszarze miasta i polega na skoordynowanym stosowaniu fizycznych środków inżynierii drogowej i organizacji ruchu w celu zwiększenia bezpieczeństwa, zapewnienia przestrzegania przepisów, poprawy warunków środowiskowych i ładu przestrzennego oraz waloryzacji otoczenia. Jest to jednocześnie działanie z dziedziny zarządzania siecią drogową, zarządzania prędkością oraz zagospodarowania przestrzennego. Obejmuje ono wprowadzanie funkcjonalnej hierarchizacji układu drogowego (różnicowanie sieci drogowej w zależności od funkcji jaką pełni droga na danym obszarze) na terenie zabudowanym. Jednocześnie na całym obszarze wprowadza się fizyczne rozwiązania z zakresu inżynierii ruchu drogowego i organizacji ruchu, które mają za zadanie wyegzekwować na kierujących pojazdami przestrzeganie przepisowych ograniczeń prędkości, zakazów wyprzedzania i innych niebezpiecznych i nieprzepisowych zachowań poprzez stosowanie fizycznych środków technicznych. Schemat funkcjonalnie zhiarchizowanej sieci drogowo-ulicznej przedstawiono na rysunku poniżej.

Rys. 2. Przykładowy schemat funkcjonalnej hierarchizacji sieci drogowo – ulicznej wraz z zarządzaniem dostępnością i strefami prędkości [8]
Oprócz poprawy bezpieczeństwa ruchu drogowego zestaw metod planistycznych i środków technicznych zwany uspokojeniem ruchu powoduje poprawę kilku parametrów, które mają bezpośredni wpływ na kształtowanie klimatu akustycznego w otoczeniu dróg. Są to m.in.: poprawa płynności ruchu, obniżenie natężenia ruchu, ograniczenie ruchu pojazdów ciężkich oraz redukcja prędkości ruchu.

W przypadku miast doprowadzenie prędkości pojazdów do wartości wynikających z przepisowych ograniczeń (czyli urealnienie prędkości ruchu) oraz wykształcenie takich warunków, aby ruch pojazdów odbywał się w sposób jak najbardziej płynny, powoduje dodatkowy efekt jakim jest znaczące obniżenie emisji hałasu. Jak wykazują badania, najniższa emisja hałasu występuje, gdy pojazdy poruszają się z prędkościami w przedziale od 30 – 50 km/h [7]. Dlatego też można przyjąć, iż prędkości, które występują po zastosowaniu środków uspokojenia ruchu (30-50 km/h), z punktu widzenia oddziaływania na klimat akustyczny są prędkościami optymalnymi.

4. Doświadczenia w zakresie redukcji wypadkowości i poprawy klimatu akustycznego po wprowadzeniu uspokojenia ruchu na drodze wojewódzkiej nr 824 w Puławach (projekt Miasteczko Holenderskie)

Uspokojenie ruchu na drodze wojewódzkiej nr 824 w Puławach zostało wprowadzone w ramach projektu „Miasteczko Holenderskie” zrealizowanego na obszarze osiedla Włostowice. Podstawowym celem inwestycji ukończonej w zimie 2009 r. było uzyskanie poprawy bezpieczeństwa ruchu drogowego i warunków życia mieszkańców na terenie osiedla Włostowice oraz na odcinku drogi wojewódzkiej przebiegającej na obrzeżu tego osiedla.

Miejski odcinek drogi wojewódzkiej nr 824 tworzą ulice Kazimierska i Włostowicka. Stanowi on główną oś układu drogowo-ulicznego południowej części Puław, a zarazem jest najczęściej wykorzystywaną drogą dojazdową do Kazimierza nad Wisłą, popularnej miejscowości rekreacyjno-wypoczynkowej. Z tego powodu główne założenia uspokojenia ruchu na miejskim odcinku drogi wojewódzkiej nr 824 były następujące:

- zachowanie dotychczasowej tranzytowej funkcji drogi, jednak przy nadaniu jej cech egzekwujących ograniczenia prędkości,
- weryfikacja dostępności do drogi i ograniczeń prędkości oraz zapewnienie ich egzekwowania za pomocą środków inżynierskich,
• zniechęcanie ruchu tranzytowego do przejeżdżania przez teren osiedla (zejdżania z drogi wojewódzkiej w głąb obszarów zabudowanych) – poprzez zastosowanie obszarowego uspokojenia ruchu na terenie całego osiedla.


• bramy wjazdowe do miejscowości (obszaru zabudowanego) z kierunku południowego;
• wyniesione powierzchnie skrzyżowań;
• skrzyżowania z wydzielonymi pasami do skrętów w lewo;
• środkowy pas wyniesiony i brukowany o zmiennej szerokości (przejezdny);
• ścieżka rowerowa powiązana z siecią dróg rowerowych w mieście;
• nowe zatoki autobusowe na przystankach.

Poniżej przedstawiono krótką charakterystykę najważniejszych środków uspokojenia ruchu zastosowanych na analizowanym odcinku drogi wojewódzkiej, które mają wpływ zarówno na redukcję prędkości, jak i hałasu na sąsiadujących terenach podlegających ochronie akustycznej.

Pierwszym z nich jest brama wjazdowa do miejscowości. Stanowi ona rodzaj wyspy środkowej, powodującej odgięcie torów jazdy pojazdów wjeżdżających i wyjeżdżających z miasta (obszaru zabudowanego). Odgięcie to wymusza redukcję prędkości, co w połączeniu ze zmianą zagospodarowania terenu i zmianą wystroju otoczenia drogi wyraźnie wskazuje kierującemu na wjazd do strefy o ograniczonej prędkości, w której występuje wzmożony ruch pieszy, rowerowy, większa gęstość skrzyżowań itd. Jedna brama jest zlokalizowana na granicy administracyjnej miasta, w miejscu gdzie zwiększa się intensywność zabudowy i pojawiają się chodniki. Druga brama znajduje się natomiast na początku odcinka drogi w miejscu, gdzie zaczyna się odcinek ruchu uspokojonego (fot. 1).
Wyniesione powierzchnie skrzyżowań (fot. 2) poprawiają ich dostrzegalność, porządkują ruch i wymuszają zmniejszenie prędkości przy wjeździe na skrzyżowanie z każdego kierunku. Dodatkowo poprawiają bezpieczeństwo i komfort poruszania się pieszych, ponieważ powierzchnia wyniesiona tarczy skrzyżowania zrównana jest z poziomem chodników, a bezpośrednio przed przejściem dla pieszych znajduje się najazd spowalniający pojazdy. Na niektórych wyniesionych skrzyżowaniach znajdują się wydzielone pasy do skrętów w lewo. Wyniesione powierzchnie skrzyżowań są powiązane ze środkowym pasem brukowanym i znajdują się na najważniejszych skrzyżowaniach na przedmiotowym odcinku. Na wyniesionych skrzyżowaniach oraz na innych wyniesionych powierzchniach spowalniających ruch zastosowanych na obszarze „Miasteczka Holenderskiego” bardzo istotną rolę odgrywają rampy najazdowe o profilu sinusoidalnym. Dzięki takiemu ukształtowaniu najazdu nie występuje efekt podrzutu, a jednocześnie możliwe jest dostosowanie najazdu do różnych wartości prędkości, co znacznie rozszerza możliwość stosowania wyniesionych elementów spowalniających ruch. Sinusoidalny przekrój rampy powoduje również mniejszy hałas przejeżdżających po nim pojazdów.
Środkowy pas wyniesiony to kolejny środek uspokojenia ruchu zastosowany w ciągu drogi wojewódzkiej nr 824. Jest on wykonany z kostki betonowej, wyniesiony ponad poziom nawierzchni bitumicznej oraz obramowany krawężnikiem leżącym. Pas ten dopuszcza przejazd pojazdów, ale tylko w określonych celach, tj. dojazdy do posesji, wyprzedzanie pojazdów wolnobieżnych, omijanie pojazdów które uległy awarii itd. Pas brukowany powoduje separację przeciwnych kierunków ruchu, a co za tym idzie ogranicza niebezpieczne wyprzedzanie. Ponieważ podstawowe pasy ruchu zostały zawężone do minimalnych dopuszczalnych szerokości, obecność wyniesionego pasa dodatkowo optycznie zawęża pasy ruchu i ma wpływ na skuteczniejsze ograniczenie prędkości. Pas brukowany ma zmienną szerokość, dostosowaną do warunków miejscowych, istniejącej zabudowy i potrzeb wynikających z geometrii drogi. Fragment tego rozwiązania przedstawiono na zdjęciu poniżej.
Tabela 1. Zmiana stanu bezpieczeństwa ruchu drogowego po wprowadzeniu uspokojenia ruchu na drodze wojewódzkiej nr 824 w Puławach

| Zdarzenia drogowe przed wprowadzeniem uspokojenia ruchu  
(2007-2009, ujęcie średnioroczne) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>kolizje</td>
<td>wypadki</td>
<td>ranni</td>
<td>zabici</td>
</tr>
<tr>
<td>25,7</td>
<td>3,3</td>
<td>6,3</td>
<td>0</td>
</tr>
</tbody>
</table>

| Zdarzenia drogowe po wprowadzeniu uspokojenia ruchu  
(2010-2012, ujęcie średnioroczne) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>kolizje</td>
<td>Wypadki</td>
<td>ranni</td>
<td>zabici</td>
</tr>
<tr>
<td>19,0</td>
<td>1,0</td>
<td>1,0</td>
<td>0</td>
</tr>
</tbody>
</table>

Procentowa zmiana stanu bezpieczeństwa ruchu drogowego

<table>
<thead>
<tr>
<th>kolizje</th>
<th>Wypadki</th>
<th>ranni</th>
<th>zabici</th>
</tr>
</thead>
<tbody>
<tr>
<td>-26,0%</td>
<td>-70,0%</td>
<td>-84,2%</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Jak wynika z powyższego zestawienia, wprowadzenie uspokojenia ruchu pozwoliło osiągnąć bardzo zauważalny spadek liczby rannych, a w drugiej kolejności spadek liczby wypadków, co oznacza, że zmalała ciężkość wypadków. Główny cel został zatem osiągnięty. Natomiast spadek liczby kolizji był mniej znaczący m. innymi dlatego, że wykonana przebudowa nie zmniejszyła liczby punktów kolizyjnych; inwestycja nie obejmowała budowy rond, natomiast doprowadziła do spadku prędkości pojazdów.

W ramach badań poziomu hałasu wykonano pomiary pilotażowe hałasu w kilku charakterystycznych punktach zlokalizowanych w sąsiedztwie odcinka drogi wojewódzkiej nr 824 w Puławach. W każdym przypadku wraz z pomiarami hałasu wykonywano również pomiary natężenia ruchu i prędkości pojazdów. Są to jedne z najważniejszych (oprócz udziału pojazdów ciężkich w potoku ruchu) parametrów, które decydują o poziomie hałasu w sąsiedztwie tras komunikacyjnych. Na podstawie analizy wyników pomiarów możliwe było określenie poziomu dźwięku w miejscach, w których zastosowano różnego rodzaju metody uspokojenia ruchu. Czas w jakim wykonano każdy pomiar w sąsiedztwie ul. Włostowickiej i Kazimierskiej był równy 15 minut, dlatego na podstawie analizy wyników tych pomiarów nie można stwierdzić czy poziom dźwięku w poszczególnych miejscach przekracza wartości dopuszczalne (nie było to celem przeprowadzonego badania i pomiarów pilotażowych).
Łączna analiza parametrów: równoważny poziom dźwięku, natężenie ruchu, prędkość pojazdów, umożliwiła sformułowanie wniosków dotyczących wpływu uspokojenia ruchu na stan klimatu akustycznego w sąsiedztwie drogi wojewódzkiej nr 824. Należy zaznaczyć, że efekt redukcji hałasu związany z za stosowaniem środków uspokojenia ruchu nie jest związany tylko z obniżeniem prędkości, co jest głównym celem stosowania tego typu rozwiązań. Również istotna jest zmiana stylu jazdy kierowców, co w połączeniu z redukcją prędkości może spowodować znaczne ograniczenia poziomu dźwięku. W poniższej tabeli przedstawiono charakterystykę miejsc, w których wykonywano pomiary.

Tabela 2. Charakterystyka miejsc zlokalizowanych w sąsiedztwie drogi wojewódzkiej nr 824 w Puławach, dla których wykonano pomiary hałasu i obliczenia akustyczne

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Opis przekroju pomiarowego (zastosowane sposoby uspokojenia ruchu drogowego)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Przejazd pojazdów przed strefą ruchu uspokojonego na granicy administracyjnej miasta Puławy</td>
</tr>
<tr>
<td>2</td>
<td>Przejazd pojazdów przez bramę nr 1 zlokalizowaną za granicą administracyjną miasta Puławy</td>
</tr>
<tr>
<td>3</td>
<td>Przejazd pojazdów pomiędzy bramą nr 1 i 2</td>
</tr>
<tr>
<td>4</td>
<td>Przejazd pojazdów przez bramę nr 2 zlokalizowaną bezpośrednio przed początkiem strefy uspokojenia ruchu</td>
</tr>
<tr>
<td>5</td>
<td>Przejazd pojazdów pomiędzy bramą nr 2 i skrzyżowaniem z wyniesioną tarczą ul. Włostowickiej i Kowalskiej</td>
</tr>
<tr>
<td>6</td>
<td>Najazd pojazdów na skrzyżowanie z wyniesioną tarczą ul. Włostowickiej i Kowalskiej</td>
</tr>
<tr>
<td>7</td>
<td>Przejazd przez skrzyżowanie z wyniesioną tarczą ul. Włostowickiej i Kowalskiej</td>
</tr>
<tr>
<td>8</td>
<td>Przejazd pomiędzy skrzyżowaniem z wyniesioną tarczą ul. Włostowickiej i Kowalskiej i progiem zwalniającym</td>
</tr>
<tr>
<td>9</td>
<td>Przejazd przez próg zwalniający</td>
</tr>
</tbody>
</table>

W tabeli poniżej przedstawiono wyniki pomiarów równoważnego poziomu dźwięku, natężenia ruchu i prędkości pojazdów. Pomiary hałasu wykonywane były w punktach zlokalizowanych w odległości 10 m od krawędzi jezdni i na wysokości 4 m nad poziomem terenu. Należy zaznaczyć, że z uwagi na uwarunkowania terenowe, pomiar hałasu w punkcie nr 9 (przejazd przez próg) wykonany został w odległości bliższej – 4.3 m od krawędzi jezdni. W celu porówn-
nania wyników tego pomiaru z innymi, obliczono przy użyciu modelu, poziom dźwięku w tym samym przekroju, ale w punkcie oddalonym o 10 m od krawędzi drogi. Otrzymano w ten sposób poprawkę z uwagi na zwiększenie odległości punktu od źródła dźwięku i w dalszej części referatu przyjmowano wyniki w tym punkcie z uwzględnieniem korekcji.

Tabela 3. Zestawienie wyników pomiarów poziomu dźwięku, natężenia ruchu i prędkości pojazdów w miejscach, w których zastosowano różne sposoby uspokojenia ruchu

<table>
<thead>
<tr>
<th>Nr punktu pomiarowego</th>
<th>Natężenie ruchu w czasie, w którym wykonano pomiary hałasu (15 minut)</th>
<th>Średnia prędkość pojazdów [km/h], zmierzona w trakcie wykonywania pomiarów hałasu.</th>
<th>Zmierzony równoważny poziom dźwięku [dB A]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pojazdy lekkie</td>
<td>Pojazdy ciężkie</td>
<td>Pojazdy lekkie</td>
</tr>
<tr>
<td>1</td>
<td>102</td>
<td>7</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>118</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>126</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>132</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>159</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>148</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>176</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>195</td>
<td>5</td>
<td>27</td>
</tr>
</tbody>
</table>

*) Z uwagi na ograniczenia związane z zagospodarowaniem terenu, punkt pomiarowy był zlokalizowany w odległości 4.3 m od krawędzi jezdni. Poziom dźwięku równy 63.6 dB to wynik pomiaru, natomiast na potrzeby referatu uwzględniono korekcję równą 2.9 dB (na podstawie wyników obliczeń w punkcie zlokalizowanym w tym samym przekroju, ale odległym od krawędzi jezdni o 10 m) i do dalszych analiz przyjmowano poziom 60.7 dB.

Analizując wyniki pomiarów przedstawione w powyższej tabeli, należy w pierwszej kolejności zwrócić uwagę, na zwiększające się natężenie ruchu pojazdów w każdym kolejnym przekroju pomiarowym zlokalizowanym coraz bliżej centrum Puław (w punkcie nr 1 natężenie ruchu jest najmniejsze, a w punkcie nr 9 największe). Wpływ na to może mieć różny czas, w którym wykonywano pomiary oraz zmiana charakteru ruchu, który w przekrojach zlokalizowanych
najbliżej centrum miasta, miał charakter coraz bardziej lokalny, a mniej tranzytowy. Poziom dźwięku przyjmuje natomiast największą wartość w przekroju nr 1, w którym natężenie ruchu pojazdów było najmniejsze. Punkt ten, jako jedyny zlokalizowany był poza strefą ruchu uspokojonego. Prędkości pojazdów były w tym przypadku największe (blisko 70 km/h zarówno dla pojazdów lekkich, jak i ciężkich). W każdym kolejnym punkcie zmierzona prędkość pojazdów była mniejsza, co wiązało się oczywiście z istniejącą strefą uspokojenia ruchu. Pomięto wzrostu natężenia ruchu o prawie 100% (różnica pomiędzy punktem nr 1 i 9), poziom dźwięku w każdym punkcie, zlokalizowanym w strefie uspokojenia ruchu był niższy niż w punkcie nr 1. Maksymalna różnica wyniosła ponad 7 dB. Należy podkreślić, że pomiary poziomu dźwięku były wykonywane w czasie 15 minut, o czym wspomniano już powyżej. W związku z tym ich wyniki należy traktować orientacyjnie. Niemniej redukcja poziomu dźwięku w każdym punkcie o co najmniej 3 dB (maksymalnie ponad 7 dB), świadczy o znacznym i bardzo korzystnym wpływie zastosowania strefy ruchu uspokojonego na stan klimatu akustycznego w sąsiedztwie drogi wojewódzkiej nr 824 w Puławach. Należy podkreślić, że w sytuacjach, w których zastosowanie innych działań mających na celu poprawę klimatu akustycznego (np. ekrany akustyczne, nawierzchnia o obniżonej hałaśliwości, itp.) może być niemożliwe, uspokojenie ruchu może być najlepszym i bardzo skutecznym sposobem na obniżenie poziomu dźwięku. Zastosowanie tego typu działań może być bardzo dobrym rozwiązaniem szczególnie w centrum miast lub na terenach obszarów zabudowanych – osiedli mieszkaniowych, gdzie oprócz obniżenia hałasu, nastąpi również poprawa bezpieczeństwa ruchu drogowego związana z obniżeniem prędkości pojazdów i zmianą stylu jazdy kierowców na mniej agresywny. Na osiągnięte wyniki ma również wpływ rodzaj zastosowanych rozwiązań: warto zauważyć, że do tej pory w Polsce powszechnie są stosowane progi typu podrzutowego, które mogą być przyczyną zwiększonej emisji hałasu, natomiast w przypadku Miasteczka Holenderskiego i drogi wojewódzkiej nr 824 zastosowano progi o płynnym najeździe i zjeździe o kształcie sinusoidalnym, które znacznie łagodzą, lub wręcz niwelują efekt podrzutu.

W każdym punkcie, w którym wykonywano pomiary hałasu, natężenie ruchu pojazdów było różne. Utrudniało to określenie wprost redukcji poziomu dźwięku jaka nastąpiła w każdym analizowanym miejscu, w którym zastosowano poszczególne metody uspokojenia ruchu. W związku z tym, w ramach niniejszego referatu, wykonano ponownie obliczenia akustyczne, ale tym razem założono w obliczeniach i modelowaniu, że na całym analizowanym odcinku drogi
natężenie ruchu jest stałe (przyjęto wartości średnie otrzymane z wszystkich punktów pomiarowych). Obliczenia wykonano w dwóch wariantach. W pierwszym z nich założono hipotetycznie, że strefa ruchu uspokojonego nie istnieje (na całym analizowanym odcinku natężenie ruchu i prędkości pojazdów są stałe). W drugim wariancie obliczeniowym założono natomiast redukcję prędkości, jaka nastąpiła w związku z zastosowaniem strefy uspokojonego ruchu. Dodatkowo w każdym punkcie zastosowano korekcję wynikającą z wpływu strefy na podstawie porównań pomiędzy modelem obliczeniowym a wynikami pomiarów. Wyniki ilustruje poniższy wykres.

Rys. 3. Wyniki obliczeń akustycznych przy uwzględnieniu i braku uwzględnienia korekcji dotyczącej wpływu strefy ruchu uspokojonego na wielkość poziomu dźwięku.

Analizując wyniki obliczeń akustycznych przedstawionych powyżej można zauważyć, że wprowadzenie strefy ruchu uspokojonego ma bardzo korzystny wpływ na emisję hałasu do środowiska. Redukcja poziomu dźwięku w niektórych przekrojach była większa niż 7 dB. W każdym przypadku poziom hałasu jest zdecydowanie mniejszy niż w hipotetycznej sytuacji, w której nie uwzględniono wpływu strefy ruchu uspokojonego. Jak wspomniano powyżej uspokojenie ruchu jest bardzo korzystne pod kątem ochrony przeciwdźwięko-
wej terenów, które są narażone na oddziaływanie hałasu o wysokim poziomie dźwięku i dla których zastosowanie innych działań może być bardzo utrudnione lub wręcz niemożliwe.

5. Podsumowanie

W niniejszym referacie na podstawie analizy danych o zdarzeniach drogowych, wyników pomiarów pilotażowych i obliczeń akustycznych wykonanych dla odcinka drogi wojewódzkiej nr 824 w Puławach przedstawiono w jaki sposób wprowadzenie strefy ruchu uspokojonego wpłynęło na polepszenie stanu bezpieczeństwa uczestników ruchu oraz na poprawę stanu klimatu akustycznego na sąsiadujących terenach. Na analizowanym obszarze nastąpił bardzo znaczący spadek liczby rannych (o ponad 84%) i liczby wypadków (o 70%), co świadczy o skuteczności zastosowanych rozwiązań pod względem zmniejszenia zagrożenia wypadkowego. Redukcja poziomu dźwięku w niektórych przekrojach tego odcinka była większa niż 7 dB. Wynik ten należy odnosić do prawidłowo stosowanych środków uspokojenia ruchu oraz z góry przewidywanych efektów związanych z płynnym przejazdem pojazdów. Oprócz trwałej poprawy bezpieczeństwa użytkowników dróg uspokojenie ruchu jest zatem bardzo dobrym środkiem powodującym redukcję poziomu hałasu, a dodatkowo może być stosowane w przypadkach, w których realizacja innych działań (np. ekrany akustyczne czy nawierzchnie o obniżonej hałaśliwości) może być bardzo utrudniona lub wręcz niemożliwe (centra miast). Zagadnienie to wymaga jednak dalszych, pogłębionych badań i analiz.
Literatura


4. Rozporządzenie Ministra Środowiska z dnia 1 października 2012 r. zmieniające rozporządzenie w sprawie dopuszczalnych poziomów hałasu w środowisku Dz.U. 2012 nr 0 poz. 1109 z dnia 1 października 2012 r.


8. EKKOM Sp z o.o. Kurs szkoleniowy z zasad uspokojenia ruchu w obszarach zabudowanych na drogach samorządowych - Puławy 2013.


Wybrane urządzenia brd w świetle nowych wytycznych barierowych

Streszczenie: W otoczeniu drogi znajduje się szereg urządzeń infrastruktury, które z jednej strony mają chronić użytkowników dróg, a z drugiej strony stwarzać mogą potencjalne zagrożenie w przypadku niezamierzonego na nie najechania. Dobrze zrealizowany projekt drogowy powinien uwzględniać możliwość popełnienia błędu przez kierowców a jednocześnie nie karać ich śmiercią lub kalectwem w przypadku zderzenia z elementem infrastruktury. Przetestowane, zgodne z normami, posiadające odpowiednie certyfikaty; świadomie i odpowiednio użyte urządzenia o cechach biernego bezpieczeństwa kształtują przyjazne otoczenie drogi. Na przykładzie wybranych urządzeń takich jak bezpieczne konstrukcje wsporcze do systemu oznakowania dróg, osłony energochłonne, bariery ochronne czy terminale stanowiące bezpieczne zakończenie tych barier, zostaną przytoczone niektóre kwestie związane z obecnym stanem prawnym oraz wymagania i parametry techniczne tych urządzeń.


- Prezentacja projektu „Wytycznych doboru systemów barier ochronnych na drogach krajowych” uwzględniające zmiany wynikające z dotychczasowych doświadczeń oraz nowych trendów w praktyce projektowania dróg;
- Wymagania techniczne i stosowanie poduszek zderzeniowych, jako elementów zabezpieczających „punktowe przeszkody”;
- Terminale (początkowe odcinki zderzeniowe barier);
- Nowe rozwiązania i technologie w zakresie systemów ograniczających drogę.

Jednak nieco wcześnie, bo 25.02.2014 Polski Kongres Drogowy zwrócił uwagę na niepokojący tryb przygotowywania tej nowelizacji istniejących uregulowań. W swoim stanowisku PKD stwierdza, że wytyczne GDDKiA powstawały bez jakiegokolwiek zaangażowania największych producentów i dostawców barier na polskim rynku oraz, że Środowisko to nie było informowane o pracach, czy choćby o wstępnych założeniach do Wytycznych. Więcej informacji o stanowisku PKD znajduje się na stronie www.pkd.org.pl

Jednym z wniosków Forum Bariery 2014 było doprowadzenie do spotkania mającego na celu rozstrzygnięcie kwestii związanych z formą, miejscem i czasem pracy grupy roboczej nad wytycznymi stosowania drogowych barier ochronnych na drogach krajowych. W dniu 7 kwietnia 2014 w siedzibie GDDKiA. W spotkaniu uczestniczyli między innymi przedstawiciele GDDKiA, SiTK, IBDiM, OIGD, Linii Życia, PKD oraz organizatorzy Konferencji Specjalistycznych MEDIA-PRO POLSKIE MEDIA PROFESJONALNE EWELENA NAWARA.


W dalszej części referatu nie będzie jednak rozstrzyganie sporów merytorycznych, bo miejsce nadziej te zostaną rozwiązane w ramach prac przytoczonej grupy roboczej. Dla inżynierów i projektantów równie ważnym aspektem są parametry techniczne danych urządzeń i to, jaki można uzyskać efekt po ich zastosowaniu.

Jedno z fundamentalnych stwierdzeń europejskich programów badawczych ostatnich lat brzmi: błęd kierowcy nie może być karany śmiercią lub kalectwem, co oznacza, że należy tak kształtować infrastrukturę i otoczenie drogi, aby
w przypadku niezamierzonego zderzenia się z jej elementami uczestnicy kolizji mieli jak największe szanse przeżycia. Oznacza to takie techniczne i technologiczne wykonanie drogi i jej otoczenia, szczególnie elementów infrastruktury znajdujący- cych się w pobliżu jezdni, aby istniała zdolność pochłaniania lub przekierowy- wania energii zderzenia pojazdu, a nie kumulowania jej na pojeździe i ciałach osób znajdujących się w pojeździe.

Urządzenia o cechach biernego bezpieczeństwa dają możliwość kształt- towania otoczenia drogi bardziej przyjaznego dla podróżnych. Muszą posiadać one określone, mierzalne i porównywalne, parametry funkcjonalne. Ważnym jest również, by były dobierane i lokalizowane we właściwy sposób. Właściwy dobór tego rodzaju urządzeń, zgodny z zasadami stosowania i lokalizowania oraz ich staranne utrzymanie może przyczynić się do zmniejszenia ilości i ciężkości wy- padków drogowych typu – zderzenia z elementami infrastruktury drogowej.

Zamiast bariery, która nie ochroniła przed zderzeniem pojazdu z konstrukcją tablicy można zastosować by konstrukcję bezpieczną
W normach odnoszących się do bezpieczeństwa urządzeń ruchu drogowego PN-EN-12767 i PN-EN-1317 zawarte są definicje podstawowych terminów stosowanych dla podatnych konstrukcji wsporczych oraz systemów powstrzymywania.

Konstrukcja bezpieczna w myśl nowych wytycznych barierowych nie wymaga zabezpieczania barierą ochronną

Do podstawowych wskaźników bezpieczeństwa należą: ASI, THIV i PHD. Są one podstawą klasyfikacji konstrukcji i systemów powstrzymywania.

ASI - Wskaźnik intensywności przyspieszenia. Maksymalna wartość ASI jest uważana za wymiar ciężkości wypadku pasażerów w uderzającym w przeszkodę pojazdzie. ASI jest wielkością bezwymiarową obliczaną zgodnie z normą PN-EN 1317.

THIV - teoretyczna prędkość uderzenia głowy wyrażona w km/h, w której hipotetyczny „punkt masy” pasażera uderza w powierzchnię hipotetycznego elementu pojazdu.

PHD - opóźnienie głowy po zderzeniu wyrażone w jednostce przyspieszenia ziemskiego (g).
ASI jest traktowany, jako najważniejszy wskaźnik. Wyraża on poziom ciężkości wypadku i stąd na etapie wyboru urządzeń BRD wymaga szczególnej uwagi.

Norma PN-EN 1317-3 określa poziomy działania, jakim powinny odpowiadać osłony energochłonne U15a (tzw. poduszki zderzeniowe) instalowane przed sztywniejszymi od nich obiektami, aby powstrzymać lub ukierunkować uderzający w nie pojazd. O zakwalifikowaniu osłony do określonego poziomu działania decydują serie badań testowych. Intensywność uderzenia pojazdu podczas kolizji z osłoną energochłonną określa się za pomocą wskaźników ASI, THIV i PHD. Różne poziomy działania tych urządzeń określone na etapie testów zderzeniowych umożliwiają określenie klasy działania osłony energochłonnej.

Czynniki decydujące o doborze odpowiednich osłon energochłonnych U15a w miejscach jedynie uzasadnionych

- Dobór odpowiednich urządzeń pod kątem wskaźników bezpieczeństwa: ASI, THIV i PHD w miejscach gdzie wymagana jest osłona
- Analiza konieczności stosowania osłon na drogach istniejących i nowo projektowanych!
- Czy dla danej lokalizacji osłona energochłonna ma być nakierowująca czy nienakierowująca pojazd po zderzeniu?
- Sposób połączenia osłony z barierą ochronną – tylne zakończenia osłon
- Spełnienie wymagań testów zderzeniowych wg normy PN EN 1317
- Koszty eksploatacji
- Koszty naprawy uszkodzonych osłon U15a
Innym przykładem w rozważaniach dotyczących zmniejszenia i skali zagrożeń powodowanych elementami infrastruktury drogowej mogą być odcinki początkowe drogowych barier ochronnych. Ich stopień niebezpieczeństwa i zagrożenia dla uczestników ewentualnej kolizji jest wg nowych norm europejskich mierzalny i zawiera się głównie w charakterystycznym dla barier poziomie powstrzymywania oraz wskaźnikach ASI, THIV i PHD. Większość stosowanych na naszych drogach rozwiązań to odcinki pochylone w kierunku gruntu na odcinku kilku metrów. Z oczywistych względów na odcinkach początkowych bariera nie spełnia parametru wysokości, czyli nie może we właściwy sposób chronić w przypadku najechania. Stanowi za to niebezpieczną wyrzutnię lub jeszcze gorzej, może wbić się w pojazd w przypadku czołowego najechania. Rozwiązaniem alternatywnym są w tym przypadku odkształcalne odcinki początkowe, które posiadają mierzalne wg norm poziomy pochłaniania energii.

Osłony energochłonne ochraniają punkty poboru opłat

W nowym podejściu, działania w zakresie poprawy BRD powinny koncentrować się na identyfikacji punktowych i liniowych zagrożeń, sposobie zmniejszenia ich oddziaływania w przypadku ewentualnych kolizji drogowych, stosowaniu urządzeń z cechami biernego bezpieczeństwa. Analizy oddziały-
wania infrastruktury drogowej na bezpieczeństwo ruchu drogowego pod kątem wdrożeń oraz dobrych praktyk ze wskazaniem badań, celów i wyników europejskich programów badawczych są narzędziem pomocnym w kształcieniu drogi „wybaczającej błędy kierowców”. Stosowanie urządzeń z cechami biernego bezpieczeństwa jest jednym ze sposobów na zmniejszenie liczby wypadków, obszarów zagrożenia wypadkami oraz zmniejszania skutków zaistniałych zdarzeń.

Deklarowane i ogłoszone programy poprawy bezpieczeństwa ochrony życia ludzkiego na drogach wymagają dogłębnych analiz i rzeczywistych działań również w zakresie doboru właściwych urządzeń dla konkretnych lokalizacji. Wydatek na urządzenia o najwyższych nawet parametrach eksploatacyjnych jest znikomą kwotą w stosunku do kwot wydawanych na zasadnicze inwestycje, a ich wpływ na poziom bezpieczeństwa jest niewspółmiernie wysoki.
<table>
<thead>
<tr>
<th>Nr Biulet.</th>
<th>Lp.</th>
<th>Data</th>
<th>Miejsce</th>
<th>Nr</th>
<th>Rodzaj spotkania</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>2</td>
<td>27.11.1989</td>
<td>Warszawa</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>08.01.1990</td>
<td>Warszawa</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>06.04.1990</td>
<td>Lublin</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>5</td>
<td>16.05.1990</td>
<td>Warszawa</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>6</td>
<td>20-21.06.1990</td>
<td>Bielsko – Biała</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>7</td>
<td>11-12.10.1990</td>
<td>Szczecin</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>8</td>
<td>15-16.11.1990</td>
<td>Toruń – Kurzętnik</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>9</td>
<td>14.03.1991</td>
<td>Warszawa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>10</td>
<td>25-26.04.1991</td>
<td>Gdańsk</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>11</td>
<td>13-14.06.1991</td>
<td>Płock</td>
<td>9</td>
<td>Zjazd Drogowców Miejskich</td>
</tr>
<tr>
<td>12.</td>
<td>12</td>
<td>03-05.09.1991</td>
<td>Łomża</td>
<td>10</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>15.</td>
<td>15</td>
<td>25-27.06.1992</td>
<td>Bełchatów</td>
<td>13</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>16.</td>
<td>16</td>
<td>10-12.09.1992</td>
<td>Olsztyn</td>
<td>14</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>18.</td>
<td>18</td>
<td>15-17.04.1993</td>
<td>Poznań - Kiekrz</td>
<td>16</td>
<td>Seminarium KLIR – Walne Zebranie Statutowe</td>
</tr>
<tr>
<td>19.</td>
<td>19</td>
<td>26.06.1993</td>
<td>Warszawa</td>
<td>17</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>20.</td>
<td>20</td>
<td>09-11.09.1993</td>
<td>Rzeszów</td>
<td></td>
<td>Zjazd Drogowców Miejskich</td>
</tr>
<tr>
<td>21.</td>
<td>21</td>
<td>14-16.10.1993</td>
<td>Gdańsk - Sobieszewo</td>
<td>18</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>22.</td>
<td>22</td>
<td>27-29.04.1994</td>
<td>Gorzów Wlkp. - Rogi</td>
<td>19</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>23.</td>
<td>23</td>
<td>26-28.05.1994</td>
<td>Warszawa - Rynia</td>
<td>20</td>
<td>Seminarium KLIR – Walne Zebranie</td>
</tr>
<tr>
<td>24.</td>
<td>24</td>
<td>07-09.09.1994</td>
<td>Tarnów - Janowice</td>
<td>21</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>25.</td>
<td>25</td>
<td>12-15.10.1994</td>
<td>Opole - Pokrzywna</td>
<td>22</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>26.</td>
<td>26</td>
<td>22-25.02.1995</td>
<td>Białystok - Supraśl</td>
<td>23</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>27.</td>
<td>27</td>
<td>11-13.05.1995</td>
<td>Leszno - Rokosowo</td>
<td>24</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>29.</td>
<td>29</td>
<td>06-08.09.1995</td>
<td>Wrocław</td>
<td></td>
<td>Zjazd Drogowców Miejskich</td>
</tr>
<tr>
<td>30.</td>
<td>30</td>
<td>08-10.09.1995</td>
<td>Karpacz</td>
<td></td>
<td>Samotnia I – Spotkanie kolejnicze</td>
</tr>
<tr>
<td>31.</td>
<td>31</td>
<td>16-24.09.1995</td>
<td>Dana</td>
<td></td>
<td>EPOKE</td>
</tr>
<tr>
<td>32.</td>
<td>32</td>
<td>09-11.11.1995</td>
<td>Warszawa – Zalesie</td>
<td>25</td>
<td>Seminarium KLIR - Walne Zebranie</td>
</tr>
<tr>
<td>33.</td>
<td>33</td>
<td>20-23.03.1996</td>
<td>Bielsko-Biała - Jaworze</td>
<td>26</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>34.</td>
<td>34</td>
<td>29.05-1.06.1996</td>
<td>Olsztyn – St. Jabłonki</td>
<td>27</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>35.</td>
<td>35</td>
<td>06-08.09.1996</td>
<td>Karpacz</td>
<td></td>
<td>Samotnia II – Spotkanie kolejnicze</td>
</tr>
<tr>
<td>36.</td>
<td>36</td>
<td>11-14.09.1996</td>
<td>Gdańsk - Sobieszewo</td>
<td>28</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>37.</td>
<td>37</td>
<td>06-09.11.1996</td>
<td>Lublin – Kazimierz Dln.</td>
<td>29</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>38.</td>
<td>38</td>
<td>14-17.05.1997</td>
<td>Kielce – Św. Krzyż</td>
<td>30</td>
<td>Seminarium KLIR</td>
</tr>
<tr>
<td>40.</td>
<td>40</td>
<td>24-26.09.1997</td>
<td>Lublin</td>
<td></td>
<td>Zjazd Drogowców Miejskich</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Location</td>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>----------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>19-22.11.1997</td>
<td>Sieradz - Burzenin</td>
<td>Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>09-14.03.1998</td>
<td>Holandia – Amsterdam</td>
<td>Intertraffic ‘98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>18-22.03.1998</td>
<td>Gdańsk - Sobieszewo</td>
<td>Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>03-06.06.1998</td>
<td>Inowrocław - Przyjezercie</td>
<td>Seminarium KLIR Walne Zebranie - Wyborcze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>04-06.09.1998</td>
<td>Karpacz</td>
<td>Samotnia III – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>10-13.03.1999</td>
<td>Bielsko-Biała</td>
<td>Bystra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>19-22.05.1999</td>
<td>Poznań - Zaniemyśl</td>
<td>Seminarium KLIR Walne Zebranie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>09-11.09.1999</td>
<td>Rybnik</td>
<td>Seminarium KLIR Rudy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>05-07.11.1999</td>
<td>Karpacz</td>
<td>Samotnia IV – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>23-26.02.2000</td>
<td>Janowice</td>
<td>Seminarium WIMED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>09-16.04.2000</td>
<td>Niemcy, Holandia, Belgia, Luksemburg</td>
<td>Intertraffic ‘000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>10.05.2000</td>
<td>Kielce</td>
<td>I Spotkanie targowe - Autostrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>14-17.06.2000</td>
<td>Bydgoszcz</td>
<td>Seminarium KLI Klonowo k/ Koronowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>06-09.10.2000</td>
<td>Raciechowice</td>
<td>Seminarium KLIR Dobczyce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>03-05.11.2000</td>
<td>Karpacz</td>
<td>Samotnia V – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>28.02-3.03.2001</td>
<td>Tatry</td>
<td>Seminarium KLIR Polana Zgorzelisko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>09.05.2001</td>
<td>Kielce – Borków</td>
<td>II Spotkanie targowe - Autostrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>06-09.06.2001</td>
<td>Wrocław – Oborniki Śl.</td>
<td>Seminarium KLIR Walne Zebranie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10.10.2001</td>
<td>Warszawa</td>
<td>Spec Seminarium KLIR na R &amp; T 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>05-07.10.2001</td>
<td>Karpacz</td>
<td>Samotnia VI – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>20-23.02.2002</td>
<td>Pokrzywna</td>
<td>Seminarium KLIR Pokrzywna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>03-06.04.2002</td>
<td>Gdańsk-Gdynia-Słupsk</td>
<td>Seminarium KLIR Jurata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>13-21.04.2002</td>
<td>Amsterdam - Paryż</td>
<td>Intertraffic 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>08.05.2002</td>
<td>Kielce – Borków</td>
<td>III Spotkanie targowe - Autostrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>04-06.07.2002</td>
<td>Dychów k/Ziel. Góry</td>
<td>Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>27-29.09.2002</td>
<td>Karpacz</td>
<td>Samotnia VII – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>09.10.2002</td>
<td>Warszawa</td>
<td>Spec Seminarium KLIR na R &amp; T 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>26.02-01.03.2003</td>
<td>Bielsko – Biała</td>
<td>Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>07.05.2003</td>
<td>Kielce – Borków</td>
<td>IV Spotkanie targowe - Autostrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>04-07.06.2003</td>
<td>Kielce</td>
<td>Seminarium KLIR Św. Krzyż</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>18-21.09.2003</td>
<td>Karpacz</td>
<td>Samotnia VIII – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>08.10.2003</td>
<td>Warszawa</td>
<td>Seminarium KLIR i IBDiM – R&amp;T 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>26-29.11.2003</td>
<td>Częstochowa</td>
<td>Seminarium KLIR Złoty Potok</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>04-05.03.2004</td>
<td>Tatry</td>
<td>Seminarium - Polana Zgorzelisko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>12.05.2004</td>
<td>Kielce – Ciekoty</td>
<td>V Spotkanie targowe - Autostrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>16-17.06.2004</td>
<td>Szczecin</td>
<td>Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>Data i godzina</td>
<td>Miejsce</td>
<td>Jacek</td>
<td>Wydarzenie</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>09-12.09.2004</td>
<td>Karpacz</td>
<td>Jacek</td>
<td>Samotnia IX – Spotkanie koleżeńskie</td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>24-27.11.2004</td>
<td>Dymaczewo k/P-nia</td>
<td>53</td>
<td>Seminarium – Walne Zebranie</td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td>16-18.03.2005</td>
<td>Tatry</td>
<td>54</td>
<td>Seminarium - Polana Zgorzelisko</td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td>11.05.2005</td>
<td>Kielce – Tokarnia</td>
<td>VI</td>
<td>Spotkanie targowe - Autostrada</td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td>9-11.06.2005</td>
<td>Toruń</td>
<td>55</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td>08-11.09.2005</td>
<td>Karpacz</td>
<td>Samotnia X – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td>24-25.11.2005</td>
<td>Aleksandrów Łódzki</td>
<td>56</td>
<td>Seminarium - Walne Zebranie</td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td>23-25.03.2006</td>
<td>Tatry</td>
<td>57</td>
<td>Seminarium – Polana Zgorzelisko</td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td>17.05.2006</td>
<td>Kielce – Tokarnia</td>
<td>VII</td>
<td>Spotkanie targowe - Autostrada</td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td>22-24.06.2006</td>
<td>Dychów k/Ziel. Góry</td>
<td>58</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td>14-17.09.2006</td>
<td>Karpacz</td>
<td>Samotnia XI – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.</td>
<td>14-17.03.2007</td>
<td>Bielsko - Białyna</td>
<td>60</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>92.</td>
<td>16.05.2007</td>
<td>Kielce – Borków</td>
<td>VIII</td>
<td>Spotkanie targowe - Autostrada</td>
<td></td>
</tr>
<tr>
<td>93.</td>
<td>20-23.06.2007</td>
<td>Przyjezjerze</td>
<td>61</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>94.</td>
<td>13-16.09.2007</td>
<td>Karpacz</td>
<td>Samotnia XII – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.</td>
<td>03-06.10.2007</td>
<td>Kielce – Św. Krzyż</td>
<td>62</td>
<td>Seminarium – Walne Zebranie</td>
<td></td>
</tr>
<tr>
<td>96.</td>
<td>27-02-01.03.2008</td>
<td>Sząbruk k/Olsztyna</td>
<td>63</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>97.</td>
<td>31.03-06.04.2008</td>
<td>Amsterdam – Rzym</td>
<td>Intertraffic’2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.</td>
<td>14.05.2008</td>
<td>Kielce - Borków</td>
<td>IX</td>
<td>Spotkanie targowe - Autostrada</td>
<td></td>
</tr>
<tr>
<td>99.</td>
<td>11-14.06.2008</td>
<td>Kaszuby - Ostrzyca</td>
<td>64</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>100.</td>
<td>11-14.09.2008</td>
<td>Karpacz</td>
<td>Samotnia XIII – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101.</td>
<td>05–08.11.2008</td>
<td>Bochnia – Tuchów -Raciechowice</td>
<td>65</td>
<td>Seminarium KLIR – Walne Zebranie</td>
<td></td>
</tr>
<tr>
<td>102.</td>
<td>04–07.03.2009</td>
<td>Tatry</td>
<td>66</td>
<td>Seminarium KLIR – Polana Zgorzelisko</td>
<td></td>
</tr>
<tr>
<td>103.</td>
<td>12.05.2009</td>
<td>Kielce</td>
<td>X</td>
<td>Spotkanie targowe - Autostrada</td>
<td></td>
</tr>
<tr>
<td>104.</td>
<td>17–20.06.2009</td>
<td>Poznań - Kiekrz</td>
<td>67</td>
<td>Seminarium KLIR – Walne Zebranie</td>
<td></td>
</tr>
<tr>
<td>105.</td>
<td>5-8.09.2009</td>
<td>Karpacz</td>
<td>Samotnia XIV – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.</td>
<td>4-7.11.2009</td>
<td>Rzeszów – Lwów</td>
<td>68</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>107.</td>
<td>23-26.03.2010</td>
<td>Amsterdam - Madryt</td>
<td>Intertraffic ’2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.</td>
<td>14-17.04.2010</td>
<td>Puławy</td>
<td>69</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>109.</td>
<td>11.05.2010</td>
<td>Kielce</td>
<td>XI</td>
<td>Spotkanie targowe - Autostrada</td>
<td></td>
</tr>
<tr>
<td>110.</td>
<td>23-26.06.2010</td>
<td>Rybnik</td>
<td>70</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>111.</td>
<td>18-21.09.2010</td>
<td>Karpacz</td>
<td>Samotnia XV – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.</td>
<td>20-23.10.2010</td>
<td>Częstochowa</td>
<td>71</td>
<td>Seminarium KLIR – Walne Zebranie – Wyborcze</td>
<td></td>
</tr>
<tr>
<td>113.</td>
<td>12-15.01.2011</td>
<td>Tatry</td>
<td>72</td>
<td>Seminarium KLIR – Polana Zgorzelisko</td>
<td></td>
</tr>
<tr>
<td>114.</td>
<td>10.05.2011</td>
<td>Kielce</td>
<td>XII</td>
<td>Spotkanie Targowe</td>
<td></td>
</tr>
<tr>
<td>115.</td>
<td>06.2011</td>
<td>Białystok</td>
<td>73</td>
<td>Seminarium KLIR</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Data</td>
<td>Miejsce</td>
<td>Zawartość</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>01-04.10.2011</td>
<td>Karpacz</td>
<td>Samotnia XVI – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>07-10.03.2012</td>
<td>Olsztyn</td>
<td>74 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>08.05.2012</td>
<td>Kielce</td>
<td>XIII Spotkanie Targowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>13-16.06.2012</td>
<td>Kielce</td>
<td>75 Seminarium KLIR Targowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>6-9.10.2012</td>
<td>Karpacz</td>
<td>Samotnia XVII – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>7-10.11.2012</td>
<td>Trójmiasto (Straszyn)</td>
<td>76 Seminarium KLIR Targowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>03-06.04.2013</td>
<td>Rybnik</td>
<td>77 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>21.05.2013</td>
<td>Kielce</td>
<td>XIV Spotkanie Targowe oraz Seminarium: S-KLIR wspólne z CT-Kielce i ITS Polska</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>12-15.06.2013</td>
<td>Dymaczewo k/Poznania</td>
<td>78 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>28.09-1.10.2013</td>
<td>Karpacz</td>
<td>Samotnia XVIII – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>16-19.10.2013</td>
<td>Bielsko Biała</td>
<td>79 Seminarium KLIR Targowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>26.02-01.03.2014</td>
<td>Rzeszów</td>
<td>80 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>25-28.03.2014</td>
<td>Amsterdam - Lizbona</td>
<td>Intertraffic ’2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>07-10.05.2014</td>
<td>Tuchów</td>
<td>81 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>14-15.05.2014</td>
<td>Kielce</td>
<td>XV Spotkanie Targowe oraz Seminarium S-KLIR wspólne z CT-Kielce i ITS Polska</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>04-07.10.2014</td>
<td>Karpacz</td>
<td>Samotnia XIX – Spotkanie koleżeńskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Jesień 2014</td>
<td>Grudziądz</td>
<td>82 Seminarium KLIR Walne Zebranie – Wyborcze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>2015</td>
<td>??</td>
<td>83 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>2015</td>
<td>??</td>
<td>84 Seminarium KLIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>09.2015</td>
<td>Karpacz</td>
<td>Samotnia XX – Spotkanie Jubileuszowe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Imprezy zakończone**

**Seminaria zakończone**

**Aktualne Seminarium**

**Spotkania planowane**

Oprac.24.04.2014 r. TB
UCHWAŁA 1/14

Zarządu Stowarzyszenia Klub Inżynierii Ruchu w Poznaniu z dnia 09.04.2014 r. w sprawie:

Na podstawie paragrafu 6 Statutu Stowarzyszenia Klubu Inżynierii Ruchu Zarząd KLIR postanawia przyjąć w poczet członków:

Martyna ABENDROT Samborowo
Wojciech MIŁUŃSKI Ząbki

Za Zarząd

Tomasz BOROWSKI
Prezes
TREND oraz Euro ET
bezpieczne odcinki początkowe barier

ZASTOSOWANIE
Na początku bariery ochronnej jako zabezpieczenie przed wbiciem się pojazdu w barierę w czasie zderzenia

ZALETY
- urządzenie zgodne z normą ENV 1317-4
- przebadane na prędkość 80 i 110 km/h
- posiadające najwyższy poziom bezpieczeństwa (klasa A)
- możliwość zastosowania na rozwidleniach jezdní o różnych poziomach

PROLIFE bezpieczne konstrukcje wsporcze
SYSTEM KONSTRUKCJI WSPORCZYCH DO TABLIC I ZNAKÓW DROGOWYCH SPEŁNIAJĄCY WYMAGANIA PN-EN 12899 ORAZ PN-EN 12767

ZALETY
- testy zderzeniowe w klasie 100,NE,2 oraz 70,NE,2
- małe przeciążenia i większa elastyczność w przypadku zderzenia z pojazdem
- lekkość konstrukcji umożliwiająca ich montaż bez użycia ciężkiego sprzętu
- projektowane zgodnie z normami EC

Nie wymaga osłaniania barierami ochronnymi !!!

WIMED Oznakowanie Dróg Spółka z o.o., ul. Tarnowska 48, 33-170 Tuchów, tel. +48 (14) 65 25 247; fax. +48 (14) 65 23 452, www.wimed.pl
Euro Tracc
osłony energochłonne U 15a

Celem stosowania osłon energochłonnych U15 A jest redukcja ciężkości wypadków drogowych w potencjalnie niebezpiecznych miejscach

Zastosowanie:
- na szpicu wyspy rozdzielającej (przed rozgałęzieniem drogi głównej i łącznicy)
- na szpicu wyspy rozdzielającej przed obiektami inżynierskimi lub na nich
- w przypadku występowania niebezpiecznej konstrukcji (np. ściana poprzeczna przy wjeździe do tunelu)

Cztery wymiary informacji

deroga.pl jest internetowym, codziennym wydawnictwem branży drogowej. Publikuje wiadomości drogowe, artykuły naukowe i popularnonaukowe, felietony, relacje z wydarzeń, komentarze i opinie.
deroga.pl prezentuje dobre praktyki, nowatorskie rozwiązania, akty prawne wraz z komentarzami. W publikacjach portalu można znaleźć to, co jest zgodne z najnowszymi kierunkami w projektowaniu, inżynierii, technologii i wykonawstwie w kraju i na świecie. Z tej wiedzy korzystają między innymi projektanci, administracja drogowa, zarządcy, firmy wykonawcze, organizacje i studenci. Forum, Galeria, Oferty pracy, Nowości w branży, TOP Biuletyn czy Sklep stanowią uzupełnienie informacji publikowanych w portalu drogowym.
deroga.pl to również organizator szkoleń, warsztatów szkoleniowych oraz specjalistycznych konferencji, w tym cyklicznej Konferencji ochrony środowiska przed hałasem komunikacyjnym TRANSNOISE (www.transnoise.pl) oraz współorganizator cyklicznej Międzynarodowej Konferencji Ochrony Środowiska i Estetyki w Budownictwie Komunikacyjnym.

Portal drogowy edroga.pl to skuteczna platforma wymiany informacji, przekazywania wiedzy i promocji.

www.edroga.pl

Edroga.pl Sp. z o.o., ul. Wadowicka 81, 30-415 Kraków
tel./fax. (12) 267-23-33, (12) 269-65-40 e-mail: redakcja@edroga.pl
doradztwo
konsultacje społeczne
analizy porealizacyjne i monitoringi
oceny oddziaływania na środowisko
akredytowane laboratorium badawcze
mapy akustyczne i programy ochrony środowiska

szkolenia
konferencje
pomiary hałasu
inżynieria ruchu
projektowanie dróg
sygnalizacje świetlne

www.ek-kom.pl

Ekkom Sp. z o.o.
ul. Wadowicka 81, 30-415 Kraków
tel./fax. (12) 267-23-33, 269-65-40
biuro@ek-kom.pl
Od szopy do nowoczesnej firmy

Od trudnych decyzji biznesowych po pisarskie inspiracje właściciela firmy

Od bezpieczeństwa ruchu drogowego do zaangażowania społecznego

Od znaku drogowego do trenera sportowego

www.wimed.pl
www.fundacjaWimed.pl
www.dabczynski.pl
www.wimark.pl
www.wiblask.pl
Inspirujemy do profilaktyki zdrowia przedsiębiorczości i muzykowania

zd@fundacjawimed.pl
www.fundacjawimed.pl
www.dabczynski.pl
www.wimed.pl
www.wimark.pl
www.wiblask.pl
Panorama Tuchowa nocą
(fot. Wiktor Chrzanowski)